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Preface

The Department of Civil Engineering and Engineer-

ing Mechanics of Columbia University, New York 27, New York,

under the sponsorship of the Structural Mechanics Branch of

the Office of Naval Research arranged a Seminar of ten lec-

tures with the title "Principles of Continuum Mechanics in

the Light of a General Theory of transformations." These

lectures are meant to serve as an introduction to the re-

cent advances made when Continuum Mechanics was extended

from the classical treatment of infinitesimally small

deformations to a treatment of deformations of unlimited

magnitude; they were presented in the Spring Semester 1962.

The author of this Report wishes to acknowledge

with thanks the financial support received from the Office

of Naval Research and the help and encouragement which

Professor A. M. Freudenthal and Members of his Staff have

given him throughout the whole series of lectures.

The Summary given below records the main results,

together with the underlying ideas. A list of references

is added of the papers published on the subject by the

author of the Report and by his collaborators.
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In continuum mechanics (as well as in every other section

of physics) the transformation theory starts from the recogni-

tion that every observation is essentially relative, in that it

specifies some relation between the observed and the observer,

and hence varies for the same observed object with a change

from one observer to another. In order to find the character-

istics of the observed object one has to eliminate, as far as

possible, the arbitrariness of the particular viewpoint of the

observer, and the transformation theory shows that this can be

achieved by combining the observations in various ways such

that the resultant combinations are invariant against changes

within larger and ever larger groups of observers. For

quantitative observations the observer will be represented by

a system of reference (i.e., a set of measuring instruments

comprising a system of space coordinates, yardsticks, time clocks,

balances, etc., with calibrated scales) and elimination of the

arbitrariness in the particular choice of the system of refer-

ence, and of the scale functions, will be achieved by combining

the observed quantitative data in various ways such that the

resultant combinations are invariant against transformations

within wider and ever wider groups of systems of reference.

These invariant combinations which are spotlighted by the trans-

formation theory are of primary importance in every section of
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physics, including continuum mechanics for which it is shown

(Lectures I and II) that they are the basis for a formulation

of all the various theoretical concepts, laws and principles,

as well as for the design of the instrumentation used in ex-

periments. They also permit to theoretically predict and con-

trol certain apparently paradoxical phenomena of mechanical

behaviour, as illustrated in experiments. For the formulation

of invariant combinations, or invariants for short, the trans-

formation theory indicates a procedure which rests entirely on

the goniometry, i.e., the measurement of the angular distribu-

tions of the divers variables which coexist at any point in the

medium. The tensor calculus with its invariant, and co- and

contravariant representations of tie angular distributions of

variables round a point by scalarS, vectors, tensors and pseudo-

tensors (volume capacities and densities of tensors) as pre-

eminently suited to carry out such invbstigations, and is

accordingly used throughout this series of lectures. Classical

continuum mechanics has already used the tensor calculus and

has fully appreciated the importance of invariants of certain

kinds which remain unchanged under certain groups of transfor-

mations, including the group of symmetry operations of the

Euclidean space, the group of Galilei transformations of a

space-time continuum, and the group of similitude transformations
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of the units of measurements of space, time and mass. In

connection with the stresses and strains involved in continuum

mechanics the modern development has added a new and more com-

prehensive kind of invariants which remain unchanged under the

transformations of all the groups mentioned above, as well as

under all transformations of the scale functions by which the

stresses and strains happened to be measured. It is this com-

prehensive kind of invariants which, in conjunction with the

general theory of transformations, is at the basis of the pro-

gress made in continuum mechanics in all its three branches

concerned respectively with the Kinematics, Dynamics and Mechan-

ical Properties of Continuous Media.

In the Kinematics (Lecture III) the general transformation

theory is applied to a study of the invariants of the principle

of preservation of continuity as revealed in the goniometry of

continuous movement. The results of this study in combination

with Lagrange's theorem of forces of restraint lead to a new

model technique based on a mechanical device referred to as a

"trellis" because in the two dimensional case it operates like

the wellknown collapsible garden trellis. For the design and

construction of the trellis model one considers a continuous

deformation from an initial to a terminal position, then

represents the change in position by a coordinate trans-
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formation, and finally determines the invariants under this

transformation. These invariants form a pattern of mutually

intersecting lines of zero elongation which in the course of

deformations can change their directions but must have in both

the initial and terminal positions the same length and form,

and the same points of intersection. The design of the trellis

model then corresponds to the pattern of intersecting lines of

zero elongation, and the construction provides for a framework

in which the points of intersections are replaced by pinpointed

universal joints and linked to one another by rigid rods re-

placing the lines of zero elongation between two neighboring

junctions. The rigidity of the rods, i.e., their inextensibil-

ity and inflexibility, and the fixing of the pinpointed joints

represent the infinitely strong Lagrange forces of restraint

which offer no resistance against a continuous deformation

from the initial to the terminal position but an infinitely

strong resistance against any changes of the invariants which

are postulated for the said deformation by the principle of

preservation of continuity. The trellis model has been put to

many practical uses, e.g.., the solution of boundary problems,

the precalculation of fatigue cracks, etc. In a further study

of continuous movements (Lecture IV) laws are derived which

allow the calculation of the superposition of such movements,
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and of their resolutions into purely rigid and purely deforma-

tory components.

In the Dynamics consideration is given to the different

conceptions of forces (Newton, Lagrange, Einstein), and the dif-

ferent types (mass and traction forces), all of which can be

distinguished by their different transformation properties. A

study of the invariants of the principle of equilibrium of

forces, as revealed in the Goniometry of the forces, then leads

to the formulation of various equilibria all of which are found

to be valid for all continuous media and conditions, nd in-

variant against the group of Galilei transformations. The

said equilibria are used in the design of devices for the meas-

urement of forces,and for the solution of certain boundary

problems.

In the Mechanical Properties of Continuous Media it was

found necessary to study the invariants of the governing prin-

ciples separately in their various aspects. The experimental

aspect was concerned with the instrumentation (Lecture VI),

and here principles were formulated for the design of "ideal"

instruments capable of supplying all the information required

for a goniometric measurement of the mechanical properties.

Two instruments of a new type were discussed which approximated

the ideal. The subsequently discussed theoretical aspect dealt
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with various new and exact definitions of the mechanical proper-

ties and pseudo-properties (Introduction to Lecture VII), and

with the establishment of a principle referred to as an Equa-

tion of State, that would apply to all materials and conditions,

and would allow a specification of all the said mechanical prop-

erties and pseudo-properties. From the thermodynamical point

of view (Lecture VII Continued) a Scalar Equation of State is

formulated as a law regulating the transformation of energy

which occurs when a continuous medium is subjected to mechanical

actions. From the said law a complete cycle of mutually inter-

connected theories is deduced which specify the various proper-

ties (and pseudoproperties) such as elasticity, viscosity, re-

laxation and retardation, etc. A different point of view is

then discussed in considering the Equation of State as a corre-

lation of the stresses and strains which coexist in every differ-

ential cell of the medium (Lecture VIII). For such a correlation

to be physically significant it must be invariant not only

against transformations of the coordinates of space and time,

but also against all transformations of the scale functions by

which the stresses and strains happen to be measured. An ex-

ample of such an invariant correlation is an appropriately de-

fined "anisotropic similitude" which is used for the development

of yet another new model technique, in generalization of the
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classical one that had been based only on invariance against

transformations of the units of space, time and mass. Finally,

an Equation of State in Tensor form is proposed, and deduced

first by way of an analytical procedure (Lecture IX) and then

by way of a generalization of the classical linear laws (Lec-

ture X). Both ways lead to the same result with a stress-

strain relation which again is invariant not only against trans-

formations of the space and time coordinates, but also against

the transformations of the scale functions for the measurement

of the stress and strain. The anisotropic similitude is con-

tained as a special case in the said relation. The series of

lectures ends with a discussion of the usefulness of the Ten-

sorial Equation of State.
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Seminar on Continuum Mechanics

Lecture I

Survey of ContinuUm Mechanics

As an introduction to the course of lectures given

in the Seminar on Continuum Mechanics the whole field was

reviewed in the light of a general theory of transformations.

In this review the fundamental principles and experimental

techniques were discussed in three sections, dealing respec-

tively with the Kinematics, Dynamics, and Mechanical Proper-

ties of Continuous Media. In each of these sections the

application of the general Theory of Transformation has made

it possible to predict various phenomena of flow which had

previously been unexpected and often presented even a para-

doxical appearance. The phenomena were demonstrated in a

series of experiments supported by the projection of slides.

|



Seminar on Continuum Mechanics

Lecture II

The General Theory of Transformations

A. Introduction

1. The General Theory of Transformations as a Research
Tool in Continuum Mechanics

B. The Dependence of Quantitative Observations on the Observed
Object and on the Metrical System of Reference Acting as
Observer

1. The Arbitrariness of the Scale Functions of the Metrical
System of Reference, and the Elimination of the Arbi-
trariness by way of Invariants and Co- and Contra-
variants

2. The Tensor Calculus as Key to the Goniometry

3. The Mechanical Symmetry

4. The Mechanical Similitude

C. The Principles of Continuum Mechanics in the Light of a
General Theory of Transformations

1. Approximation through the Use of Newton-Galilei Systems
of Reference

2. Principles and Model Techniques in a Comprehensive
Scheme of Continuum Mechanics

I



Seminar on Continuum Mechanics

Lecture II

The General Theory of Transformations

A. Introduction

1. The General Theory of Transformations as a Research
Tool in Continuum Mechanics

The development of Physics as an exact science brought

about the need for a concise formalism by which one could inter-

connect all observations of physical phenomena with one another,

and with a mathematical scheme of equations from which one could

precalculate theoretically the experimental data resulting from

the said observations. Such a formalism was found in the gen-

eral theory of transformations, and was then expanded so as to

serve not only for a formulation of known interconnections, but

also as one of the most powerful and versatile research tools

for new interconnections which previously had not even been sus-

pected to exist. This will be shown in the following discussion

when the principles of Continuum Mechanics will be reviewed in

the light of the general theory of transformations.

B. The Dependence of Quantitative Observations on the Observed
Object and on the Metrical System of Reference Acting as
Observer

1. The Arbitrariness of the Scale Functions of the Metrical
System of Reference and the Elimination of the Arbi-
trariness by way of Invariants and Co- and Contra-
variants
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Continuum Mechanics, as well as any other part of

Physics, can be developed into an exact science only through

quantitative observations, and the general theory of transfor-

mations starts from the recognition that every such observation

is essentially relative in the sense that it specifies some rela-

tion between the observed object and the observing system, and

hence varies for the same observed object with a change from

the arbitrary viewpoint of one observing system to that of

another. For quantitative observations the observing system

will have the form of a metrIcal system of reference i.e.,

a set of measuring instruments with calibrated scales for all

the physical parameters under consideration, and the arbitrari-

ness of the viewpoint of the system will here appear as the

arbitrariness in the choice of the scale functions according

to which the scales of the instruments are calibrated, i.e.,

the numerical values of the parameters are associated with the

divisions and subdivisions of the scales of the instruments.

1. The arbitrariness in the choice of the scale function is

well known and often used in graphical representations, when the

numerical values of a parameter may be distributed along the x

or y axis either linearly, or quadratically, or logarithmically,

or according to any scale function most suited to the particular

purpose in hand. It is, however, important to realize that the

same arbitrariness of the scale function is present in every

theoretical definition and experimental measurement of a parame-

ter, and for this reason the scale functions must here be regarded

as an integral part of every metrical system of reference.
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In order to enable the metrical system of reference to measure

all the physical parameters involved in Continuum Mechanics, it

is important that the system be equipped not only with a cali-

brated coordinate system as a yardstick for the measurement of

space, but also with a cglibrated clock for the measurement of

time, a calibrated balance for the measurement of mass, and

calibrated gauges for the measurement of strains, stresses, etc.

In any particular choice of the metrical system of reference

all the scale functions involved in the various calibrations

must be regarded as arbitrary since no laws of calibrations

are known a priori.

In order to give physical significance to any inter-

relation of the numerical values of parameters, it is necessary

to eliminate the arbitrariness in their scale functions, and

this can be achieved by interrelating or combining the parameters

under observation in various ways such that the description of

the resultant interrelations, or combinations, have the simple

transformation Droperties of invariance, or of co- and contra-

variance against wider and ever wider groups of transformations

from one arbitrarily chosen system to another. These invariants

(or co- and contravariants) are of primary importance for the

establishment of law and order free of arbitrariness (within a

specified group of transformations), and the transformation

theory, by spotlighting them, made it possible to derive in
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Continuum Mechanics systematically all the various theoretical

concepts, laws and principles, as well as the design of all

experimental instrumentation from the said invariants or co-

and contravariants formed by appropriate combinations and inter-

reactions of the physical parameter involved. By this procedure

one achieved a considerable degree of control over the behaviour

of materials under mechanical actions, even in apparently para-

doxical cases, as,e.g., when normal pressures were generated

in laminar shearing movements.

In the procedure mentioned above the general theory

of transformations had to make use of a great number of develop-

ments of which some have already been well known in Classical

Physics, such as the Tensor Calculus and the theories of

Mechanical Svuuetry and Mechanical Similitude which will be

briefly discussed below in Sections 2 to 4 of this chapter.

Important though they were, one found these developments insuf-

ficient to provide effective control over the mechanical behav-

iour of materials, and therefore in need of supplementary devel-

opments, which were specifically designed for the purpose. They

will conveniently be discussed at a later stage, in connection

with the application of the general theory of transformation to

the principles of Continuum Mechanics (see sections 1 and 2 of

Chapter 3).
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2. The Tensor Calculus as Key to the Goniometry

The Tensor Calculus was developed for the mathematical

handling of physical parameters of all kinds which are distribu-

ted through space according to continuous analytical functions

of the space coordinates, i.e., functions which can be developed

in the neighborhood of any point in space into a Taylor series

(convergent power series) with constant coefficients, propor-

tional to the values of the local space derivatives of the

functions.

The calculus made it possible to classify all the

said physical parameters according to their transformation pro-

perties, and represent the distributions in space of the param-

eters by fields of tensors of various orders, with co- and/or

contravariant components. This representation had the advantage

of being free from the arbitrariness of the metrical system of

1
reference with regard to the scale functions of the space

1. The Tensor Calculus constituted only the first, but not the

last step in the elimination of the arbitrariness in the metrical

system of reference, because the arbitrariness was eliminated

only with respect to the scale functions of the space coordinates,

while it remained in the scale functions of the strains and

stresses and other parameters measured by the system of refer-

ence. This remaining arbitrariness, and its elimination will

be discussed in the Chapter C Sections 1 and 2, and in greater

detail in Lectures VIII and X.
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coordinates. A further advantage was derived from the above-

mentioned development into a Taylor series which showed that the

distribution of the values of a parameter throughout the whole

three-dimensional expansion of space was already illy determined

by the Goniometry, i.e., by the measurements taken at any one

point round the full solid angle of directions. Moreover, the

results of the Goniometry were already predetermined to a cer-

tain extent since the distribution of the values of the parameter

round the full solid angle of directions had to be the same as

that of a multilinear form of the space coordinates, the multi-

plicity of the form being determined by the order of the tensor

under consideration.

Full use will be made in this series of lectures of

the tensor calculus and in particular of the Goniometry, the

importance of which had not previously been noticed. It is the

Goniometry of the strains and stresses which has greatly simpli-

fied the theory of Continuum Mechanics as well as the design of

the instrumentation.

3. The Mechanical Symmetry

Another development which proved very helpful to the

application of the general theory of transformation to Continuum

Mechanics was derived from a consideration of the Mechanical

symetry defined by the invariance of the description of
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mechanical behavior under a group of symmetry transformations,

i . of transformations which are applied to the metrical

system of reference, and leave unchanged the distance between

any two points or, more exactly, the quadratic form by which

the distance between two points is expressed in terms of the

space coordinates of the metrical system of reference. A

complete systematic register of all conceivable different

classes of mechanical symmetry wasthen provided by the theory

of symmetry transformations, and the ordering into these classes

had the advantage that the materials collected in one class

had in their behavior certain general features in common.

In particular, one found that the symmetry class already deter-

mined the number of mutually independent components in every

mechanical property, and the elements in the symmetry class,

I.e., the axes and planes of symmetry, indicated the directions

along which each mechanical property reached an extreme value

(maximum or minimum). Moreover, one could elaborate the order

already achieved by the symmetry class through the application

of the representation theory. This theory associated with each

symmetry group a number of different representations by groups

of unitary matrices, and thus provided for the mechanical behav-

ior the means for a further ordering within each class of mechan-

ical symmetry. In this way one ordered, for instance, all

mechanical vibrations of a material or a given symmetry class
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into different normal modes.1

4. The Mechanical Similitude

Yet another useful development was based on a study

of the Mechanical Similitude, defined by the invariance of the

description of the mechanical behavior under a group of simili-

tude transformations of the metrical system of reference, i.e.,

under a group of linear homogeneous transformations of the units

of length, time and mass used in the metrical system of refer-

ence. The mechanical similitude served as a basis for dimension-

less analysis, and for the classical model techniques allowing

for changes of size, speed and specific gravity. A new generali-

zation of this model technique will be discussed below in Section C2.

C. The Principles of Continuum Mechanics in the Light of a
General Theory of Transformations

1. Approximation through the Use of Newton-Galilei Sys-
tems of Reference

A discussion of the Principles of Continuum Mechanics

as seen in the light of a general theory of transformations can

be given here only in a first approximation in which one can

neglect the interactions between mechanical and electrodynamic

phenomena. Such interactions play an important role in the effects

1. The order established by the symmetry classes, as well as

that established by the normal modes applies equally well to all

electromagnetic phenomena, in particular to all spectra, what-

ever their origin, their frequency, etc.
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described in Einstein's Special and General Relativity Mechanics

and in the Heisenberg-Schroedinger-Dirac Wave and Quantum Mechan-

ics, but become negligible when one limits the range of experi-

mental conditions to movements with velocities which are small

compared with the velocity of light, and to pieces of matter

of sized which are large compared with the interatomic dimen-

sions. It will be tacitly understood that the range of experi-

mental conditions in Continuum Mechanics will be so limited,

since it would far exceed the scope of this series of lectures

to discuss the highly successful but very complicated applica-

tion of the general theory of transformation to the formulation

of the principles of Relativistic and of Wave and Quantum Me-

chanics.

Within the above specified range one can now make all

quantitative observations in Continuum Mechanics with a metrical

system of reference which uses the classical laws of the Newton-

Galilei Mechanics of Rictid Bodies for calibrating the scales of

all the measuring instruments. This calibration ensures that the

measurements taken on all the various physical parameters involved

fit into one self-consistent scheme in which the scale functions

for time and mass are adjusted to those of the space coordinates

according to the Galilei laws of the space time transformations,

and Newton's law of the inertia of masses. Compliance to all

these laws, and a tensor representation of all the physical
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parameters involved, will reduce but not eliminate the arbitrari-

ness in the metrical system of reference. In particular one can

deduce the arbitrariness still remaining in the system from the

lack of knowledge of any calibration laws which could specify

the scale functions of strains and other dimensionless parame-

ters, or determine the units of measurements for space, time and

mass in the scale functions of the stresses, and other parameters

expressed in terms of dimensions. The tensor representation

does not help here, as, e.9. one can measure the strain by any

arbitrarily chosen scale function of the elongation tensor A I

such as X-1 , or I , or In A etc., where

denotes the unity tensor. It is important to recognize the

remaining arbitrariness in the chosen metrical system of refer-

ence because it is just this arbitrariness which was removed for

the strains and stresses by a new development of the general

theory of transformations, resulting in the formation of scale

invariant interrelations, as discussed below in Section 2 of

this Chapter.

2. The Principles and Model Techniques in a Comprehensive
Scheme of Continuum Mechanics

It was found convenient to study the principles and

model techniques of Continuum Mechanics in the framework of a

comprehensive scheme, providing three distinct sections, each

governed by a different principle. The first section,- S
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will be shown to be governed by the Principle of Preservation of

Continuity (Lecture III and IV), the second section, Dynamics,
1

by the Principle of EQuilibrium of Forces (Lecture V), and the

third section, Mechanical Properties by the Principle of an

Equation of State (Lectures VI to X).

A discussion of the scheme based on the general theory

of transformation showed that one could take over unchanged the

classical formulations of the principles involved in the two

first named sections, Kinematics and Dynamics, because one

found that these formulations were already invariant against

groups of transformations sufficiently wide to ensure general

applicability within the full range of different materials

and mechaniaal actions. However, in the third section dealing

with the Mechanical Properties, the situation was different.

Here one had to find a new formulation for the principle in-

volved, because the classical formulation was invariant only

within a narrow group of transformations, and had an accordingly

restricted range of applicability.

A short report is given below of the results obtained

in the various sections through the application of the transfor-

mation theory.

1. This principle is so formulated so as to include Newton's

law of inertia by postulating an equilibrium between the inertia

forces and the resultant of all the other forces.
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In the first section, Kinematics, one deduced from

the Principle of Preservation of Continuity certain invariants

which served as a basis for a new model technique, in which a

Trellis Mechanism was used to simulate the continuous movements

of materials, and to provide solutions for boundary problems.

In the second section, Dynamics, a discussion of the

transformation properties of the Principle of Equilibrium of

Forces resulted in an appreciation of the different invariants

which were the basis for the different conceptions of forces,

introduced by Newton, Lagrange and Einstein respectively.

Finally, in dealing with the third section, Mechanical

Properties, one had to recognize that these properties are de-

fined by the interrelation of the strains and stresses which co-

exist in every differential cell of the material while the me-

chanical action is applied. It will be remembered that the

classical theory had formulated such an interrelation by two

linear laws, viz., Hooke's law of elasticity and Newton's law

of viscosity, whose constant coefficients denoted the mechanical

properties. Both these laws were severely limited as they took

into account only strains of infinitesimally small amounts, and

applied only to materials which were either "ideally elastic"

or "ideally viscous." The insufficient generality of the class-

ical formulations became increasingly troublesome with the dis-

covery of an ever growing number of so-called "abnormal" mate-
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rials, and "abnormal" phenomena of flow, the term "abnormal"

being used here to express deviations of the mechanical proper-

ties from those mistakingly regarded as theoretically estab-

lished. In due course one found abnormal behavior in most mate-

rials of technical or scientific importance, including metals,

plastics, paints, rubbers, timber, colloidal gels and sols, etc.,

all of which had mechanical properties somewhere between ideally

elastic and ideally viscous, and often exhibited changes of

these properties dependent on the amounts of strains (large or

small) contained in the pre-history of the applied mechanical

actions. The increase in numbers and in importance of the devia-

tions from the conventionally accepted classical laws finally

made it imperative to replace the classical laws by a new prin-

ciple with an Equation of State applicable to the mechanical

properties exhibited in the behavior of materials of all kinds

throughout the whole range of applied mechanical actions with

strains of any amounts, large or small. The problem of formu-

lating explicitly such a principle as an Equation of State was

tackled by first adjusting to one another the scale functions of

the strains and stresses that coexisted in every differential

cell of the material while the mechanical action Was applied,

and then finding for these strains and stresses scale-invariant

interrelations. The simplest such interrelation was referred to

as "Anisotropic Similitude." It was defined for every differential
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cell in a scale-invariant manner by postulating the coincidence

of the directions in space along which the normal, tangential

and cross-components of the strains and stresses extend with

respect to planes of all orientations. Based on this scale-

invariant interrelation one developed a new model technique of

a general type which contained as a special case the classical

model technique of mechanical similitude (mentioned earlier).

Moreover, one proceded from the simple interrelation of Aniso-

tropic Similitude to more complicated ones which were invariant

to wider and ever wider groups of transformations, and proposed

as the new principle for the mechanical properties an Equation

of State, given by the particular scale invariant stress-strain

interrelation which contained both the classical laws of elas-

ticity and viscosity as special cases, and was invariant against

the widest groups of transformations.

Experimental tests were made and sbowed that effective

control over the behavior of materials of all kinds could be

established over very wide ranges of experimental conditions, by

taking as a guide not only the Principles of Continuity and of

the Equilibrium of Forces, but also the newly proposed Princi-

pie of an Equation of State and the new model techniques of the

Trellis Mechanism and the Anisotropic Similitude.

It should be noted that it had been found convenient

in the subsequent lectures to use some abbreviations viz. the



2-15

term a system of reference will be used instead of metrical

system of reference, and the-term Galilei system instead of

Newton-Galilei system.
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Seminar on Continuum Mechanics
(Lecture III)

Principles of Kinematics

Part I. The Preservation of Continuity

A. Introduction

1. Systems of Reference and Kinematic Variables

The Kinematics of Continuous Media is concerned with

the theoretical description and experimental measurement of the

kinematical variables, i.q., of variables which characterize the

positions and movements of such media in space and time relative

to some conveniently chosen system of reference.

There is a great deal of arbitrariness in the choice

of the system of reference, as well as in that of the kinematic

variables. In either case the choice will be made so as to fit

in the best way the theoretical description to the experimental

measurements. For different problems the choice will in general

be different too, and in such cases one will have to change from

one system of reference and one set of variables to another sys-

tem and another set by appropriate coordinate transformations.

For the problems dealt with in this series of lectures

it will be convenient to choose once and for all a Galilei sys-

tem of reference which measures time with a mechanical clock

and space with a rigid yardstick, and a system of coordinates

which have all been calibrated in accordance with the Euclidean
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principles of 3 dimensional geometry and Newton's principles of

the inertia forces.* The kinematic can be described in terms

of movements of either points or planes, and the kinematic vari-

ables are then so chosen that they express in the simplest man-

ner the formation of the principle of preservation of continuity

in the Galilei system of reference. In conformity to the general

convention, the description in the chapter "Kinematics" will be

given in terms of movements of points, but this description will

have to be changed in the later chapter "Equation of State" into

that of movements of planes.

The principles used for the calibration of the Galilei

system of reference do not provide sufficient information for a

description of the kinematics of continous media and the intro-

duction of a further principle, namely, that of preservation of

continuity, will be necessary. To see this one may note that the

* It will be noted that the Newtonian principles of the inertia

forces have to be considered in the kinematics because otherwise

the measurements of space and time would give results different

from those obtained in a Galilei system. In relativistic mechan-

ics, I.g., the electromagnetic clock would differ fromthe me-

chanical one, and the length of the rigid yardstick would vary

* with its movement.



3-3

principles used for calibration leave the movements of the points

of the medium mutually independent so that every point of the

medium would be allowed to move in 3 degrees of freedom arbitrar-

ily, and independently of the movements of the other points.

Considering that there is an infinitely large number, N say, of

points along an edge of a differential cell (however small) one

finds that there would be 3N3 degrees of freedom of movement

associated with every differential cell, and 3N3 M3 such degrees

for any finite portion of the medium, when M denotes the infi-

nitely large number of differential cells along one dimension

of the said portion. If one had to deal with a real material

instead of the ideal continuous medium one would find the situa-

tion not much better because the number of actual particles

(nuclei and electrons) in the real material would still be un-

manageably large. In either case where would be little use at

this stage to introduce kinematical variables, since their vast

number (at least equal to the number of degrees of freedom in-

volved) would make it impracticable to specify each of these

variables individually, while on the other hand such an individ-

ual specification would be required as each variable is indepen-

dent of all the others. The way out of this impass is to apply

statistical methods over sufficiently large sections of space

and time.
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2. Continuity of Movements in Statistical Averages

For a real material one derives statistical averages

on the basis of the assumptions and principles of thermodynamics

and of the kinetic theory of heat content, while for the ideal

continuous medium a corresponding assumption is made by the intro-

duction of a principle which serves the same purpose, and is re-

ferred to as the principle of preservation of continuity. The

name is not well chosen as the principle postulates much more

than the mere preservation of continuity. It postulates in fact

all that is necessary to develop the movement in time and space

into a convergent power series. However, the name will be re-

tained here in order to avoid the introduction of a new nomen-

clature. It will be seen from the following discussion that

this principle which is usually regarded as a purely mathemati-

cal formalism with little, if any, physical significance, is in

fact, dominating and controlling the main features of the whole

of Macroscopic Mechanic as described in the Kinematic Dynamic

and Mechanical Properties of Continuous Media. For application

of the Macroscopic Mechanics to the Microscopic one, it is, how-

ever, necessary to remember that the movement of a point of the

ideal continuous medium does not correspond to the movement of

any individual particle of the real material but to the linear

average of the movements of a large number of such particles

(s..., ideal gas).
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In this description the equations will be formulated

either in terms of the invariant tensor notation or in terms of

co- and contravariant components indicated by lower and upper

indices respectively. All indices run from 1-3 and, as usual,

summation will bn implied over any index which occurs as upper

and lower index in the same term. Either notation insures the

invariance against all transformations of the coordinate system

if applied to quantities which are true tensors, such as the

1coordinates of finite size, and the volume capacities and densities

of tensors, and in such cases the notation ensures invariance

only within some restricted group of systems of coordinates in

which the quantities transform in the same manner as true tensors.

The Cartesian systems of coordinates form such a restricted

group, and an equation will be marked with an asterisk whenever

its invariance against coordinate transformation is restricted

to the group of Cartesian systems.

1. See, e g., Spain "Tensor Calculus" (Oliver and Boyd) p. 5.

that space coordinates of infinitesimally small length, JX* say,

transform as contravariant vector components in all coordinate

systems, while space coordinates of finite length do not al-

ways, and transform as contravariant vector components only in

systems of coordinates derived from a Cartesian system by linear

transformations with constant coefficient.
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B. The Preservation of Continuity

1. Formulation of Principle

For the formulation of the principle one considers

in the movement of the medium two positions, an initial one,
0

occupied at an instant of time t and a terminal, occupied at

an instant t.

In order to identify the points of the medium one

uses a system of coordinates which may be fixed in space. The

points of the medium may then be labeled either in the initial
or

position with the local space coordinates x , or in the ter-
k

minal position with the corresponding coordinates x . This

alternative leads to a description of the kinematic from two
or

points of view, one referred to as the Lagrangian uses the x
k

as the independent and the x as the dependent coordinates,

while the other referred to as Eulerian conversely uses the

k or
x as the independent and the x as the dependent coordinates,

according to the equations

x = F (x , x ,

o r 1, 2, 3 Q(2)Xr Gr(x I x 2 x 3 t- 2

The movement, as described by equations (1) and (2)

will henceforth be assumed to conform to the principle of pres-

ervation of continuity.
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This principle postulates continuity, univalueness,

and univalued reversibility not only for the functions F and

G r  (which relate to one another the initial and tenminal posi-

tions), but also for the time and space derivatives of these func-

tions up to as high an order as may be required which is infinite

for the problem under discussion. (The minimum requirement is

for derivatives up to and including second order.)

Adopting the Lagrangian point of view one deduces from

the definition of the principle of preservation of continuity

that Lhe functions F (and their derivatives) are regular ana-

lytical functions in time and space, i.e., functions to which

Taylor's theory applies. According to this theory there is

domain of finite size referred to as regular domain within

which the functions F can be developed into convergent power

series of time and space increments t and Ii round a center

provided by a representative instant of time and particle in

space, located within the said domain, viz.,

where the Jacobi determinant of the first space derivatives must

be different from zero, viz., dt W4 PI 0 and > 0 because

of the univalued reversibility of the movement and the exclusion

of mirror inversion. For the purpose of kinematics, it suffices

to formulate the principle by (3) but it may be noted that the



3-8

combination of (3) with the invariance of mass is an equation

which in the literature is described as Equation of Continuity.

From the Lagrangian point of view one can derive the

Eulerian (or vice versa) by exchanging the dependent and inde-

k rpendent space coordinates, and the functions F and G

2. Kinematic Variables

The choice of kinematic variables is to a large extent

arbitrary and may be adjusted to the particular problem ;n hand.

Part I of the Kinematics deals with the problems connected with

the principle of preservation of continuity and the set of kine-

matic variables will be so chosen as to express this principle

in the simplest form. Part II of the Kinematics will deal with

problems connected with the resolution of movements into purely

rigid and purely deformatory components, and there one will ex-

press this resolution in terms of new sets of kinematic variables

which are defined as suitably chosen functions of the variables

introduced here. Finally, in the chapter dealing with the Equa-

tions of State the problems are concerned with the relations be-

tween the kinematic and Dynamic, and here again one has to intro-

duce new sets of kinematic variables and define them as suitably

chosen functions of the variables introduced in Part Iand II.

Altogether one has here already a choice between a

variety of kinematic variables referring respectively to

(a) points or planes, with labels attached in either
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(b) initial or terminal position (Lagrange or

Euler) and with measures by any of a number of suitably chosen

scale functions. There are many other alternatives of which

some will be considered in Kinematics, Part II. Unfortunately,

one has to consider all of them, since each one has the advan-

tages and disadvantages for various problems.

Based on the considerations given above, one may now

introduce kinematic variables with reference to equation (3) and

it will suffice here to discuss these variables from the Lagran-

gian point of view as the discussion from the Eulerian point of

view would be analoguous, mutatis mutandis, as explained above.

Definition

For the problems dealt with in Part I of the Kinematics

one can define a local set of kinematic variables at any repre-

sentative instant of time and particle in space by the successive

derivatives in time and space of the functions F taken then

and there. For the problem discussed in later chapters conven-

tionally agreed functions of these derivatives may be used and

the functions adapted to the particular problems in hand. For

ease of reference the functions F will be regarded as deriva-

tives of zero order, and thus included in the series of success-

ive derivatives.

It will be noted that the local kinematic variables

(being defined by the derivatives of the functions F can be
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determined within an infinitesimally small region round a repre-

sentative instant of time and particle in space, and once so

determined can be substituted in (3), and thereby completely

characterize the movement described by the functions F for

the regular domain of finite size, i.e., for some a finite inter-

val of time and some finite portion of the medium. The com-

pleteness of the characterization makes it possible to express

all sets of kinematic variables which may be introduced later,

as functions of the variables introduced here. It must be em-

phasized,however, that the characterization of the movement by

the local kinematic variables is given in an abbreviated form in

which it is understood that these variables will be used as

coefficient of the various powers of Ii and k., as indicated

in (3). only in connection with the power series can the local

kinematic variable serve as a characterization of the movement.

It is then seen from the form of this series that the coefficient

of successive powers are tensors of increasing orders, and that

the local kinematic variables are identical with the components

of these tensors.

For an explicit calculation of the local kinematic

variables one has to decide on the position of the center of the

development (3) in relation to the system of reference. The

decision is arbitrary and there are two different conventions

in use. According to one convention the position of the center
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is fixed, once and for all, within the regular domain of the

development(3), while according to the other the center is left

movable within that domain. From the two different conventions

one deduces two different specifications of the local kinematic

variables.

In the case of a fixed center one obtains constant

values for all the tensors which appear in (3) as coefficients

of the various powers, since all the tensor components are the

time and space derivatives taken at the fixed center. Accord-

ingly, all the local kinematic variables too will have here con-

stant values and will form the components of tensors which are

immovably attached to the fixed center.

In the case of a movable center one finds that the

tensors which appear in (3) as coefficients of thevarious powers

are now functions of the time and space coordinates of that cen-

ter, since the tensor components are here the derivatives taken

at a center whose local location varies in time and space. In

this case all the local kinematic variables too will be func-

dons of the time and space coordinates of the center and will

here form the components of tensors which spread through the

whole of the regular domain of the F and vary there with the

location of the center in that domain.

For the characterization-of the movement one may use

the local kinematic variables with either convention, as the
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results are equivalent and can be transformed into one another

by way of (3). Which convention to use will depend on the.par-

ticular problem in hand, and often it will be advantageous to

change from one convention to another. In any case, it should

be clearly indicated which convention is used when, as other-

wise misunderstandings will arise.

3. Conditions of Compatibility

The necessity to distinguish clearly between the

kinematical variables attached to a fixed center, and those at-

tached to a moveable one can best be appreciated by considering

that the components of the former are mutually independent con-

stants, while those of the latter 4ze mutually interrelated func-

tions of the (variable) coordinates of the center. The inter-

relations are known as Conditions of Compatibility and are de-

rived from a comparison of equation (1) with (3). Both equa-

tions describe the same movement in different ways. While (1)

uses in the description 3 and only 3 mutually independent func-

tions of the time and space coordinates, viz.,

..(x , o2, V , t _-2(xO1,o2, 3, t- )for k a 1, 2,3

equation (3) uses an infinite number of them, viz., all the local

kinematic variables lk(x t), 1k(0 t), etc. It follows that

of all the local kinematic variables given as functions of time

and space coordinates only three can be mutually independent,

namely, three Pk(R t) for k - 1, 2, 3, while any four or more
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must be interrelated. The algebraic form of the interrelation

will depend on the particular kinematical variables chosen. As

an example one may consider the nine variables F (2 t) (for

k -1, 2, 3 and m - 1, 2, 3) which can be derived as the com-

0
ponents of the gradient of a vector F (x t), viz.,

VF ( t) -F k (o t) e em 4)m km
where ek and e are the co- and contravariant unit vectors.

Remembering then the identity

V"V 30 (4a)

one obtains from (4) and (4a) the compatibility condition

61 a+3 o0 ao
VXV F( t) - [,F (x t) - I (x t) ea+2 " 0 (4b)

The compatibility conditions are always trivially fulfilled if

one derives the kinematic variables by successive gradient

operations as in (4). However, the conditions are not trivial

and, in fact, most important if one were to choose the nine

functions Fk (X t) etc. arbitrarily, or tried to impose on themm

certain conditions, such as the propagation of harmonic waves,

or volume changes corresponding to a prescribed temperature

gradient, etc.

4. The Degrees of Freedom (Allowed and Forbidden) for Con-

tinuous Movements

For an assessment of the degrees of freedom involved in

the movements allowed by the principle of preservation of continu-

ity one may conveniently use the local kinematic variables together
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with the convention of a fixed center for the developments into

power series as in (2.2). Moreover, one need not consider the

development in time, as this affects only the velocities, accelera-

tions, etc., of the movement but not the freedom in space of its

path. Accordingly, one may assume it - 0 and then find from (3)

x k + S xk Fk + S1 + Fk i+ P k + (5)

where all the F's are mutually independent constants so that

each nonvanishing term will specify one degree of freedom of

movement, and the degree of the term will indicate the order of

magnitude of that movement, when it is agreed that the I are

infinitesimally small of first order. By evaluating (5) in suc-

cessive steps of approximation of order 1, 2 ... one can cross out

in (5) all terms which contain products of more than 1, 2 ... n

of the i. One can then find the number of degrees of freedom in-

volved in that approximation by counting the number of the remain-

ing terms. For the most general class of movements compatible

with the principle of preservation of continuity all the F's with

various indices may be different from zero, and one finds here for

approximations of orders 1, 2 .... n the number of degrees of free-

dom equal to 12, 39 and 3 2 respectively. In many cases

the movements with which one has to deal are not in the most gen-

eral class, but in a more special one, in which some of the F s may

be zero. in such cases the numbers of degrees of freedom are found
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by first discarding in (5) all the terms which are multiplied by

an F of zero value, and then proceeding in successive approxi-

mations as indicated above. One then finds for an infinitesimally

small region that all the movements, whether general or special,

will have a number of degrees of freedom which is given in approxi-

mation of order 1, 2 ... n by12b for first approximation
d 4 3n l for second approximation (6)

for nth approximation
2

When one procedes from the infinitesimally small region

surrounding the center to regions of finite size within the regular

k
domain of the F one finds that no new degrees of freedom come

in as the development (5) hold true for the whole regular domain.

The number of degrees of freedom involved will depend on the class

of movement considered, and on the degree of accuracy required.

For the most general class of movement the obtained degree of accu-

racy will decrease the further one goes away from the center of

the development, but even here only a limited number of degrees

of freedom will be involved as the postulated convergence of the

power series ensures that any required degree of accuracy can be

obtained from a limited number of terms in the series. For special

classes of movements the situation is more advantageous and it

should be particularly noted that there is an important class of

movements known as "linear" or "homogeneous" for which perfect

accuracy is obtained, no matter how far one departs from the center
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of the development, by taking account only of the terms of zero

and first order in the development, and thus involving only 12

(or less) degrees of freedom for any region large or small.

It follows from the above discussion of the degrees of

freedom that the principle of preservation of continuity controls

the kinematic of continuous media very tightly. Considering, e.j.,

the kinematic of a differential cell of the medium it has been

shown in the introduction that in the absence of the principle

there are N3  degrees of freedom involved (where N is an infinitely

large number), while '..i the presence of the principle this number

has been reduced to 12 in a first approximation. In other words

the principle determines for all media, and under all conditions

the movements in N3 degrees of freedom in a first approximation

by postulating that all these movements must be zero in the said

approximation. Moreover, in the remaining 12 degrees of freedom

the changes in the movements from one cell to the neighboring

cells are restricted by the conditions of compatibility by which

the principle controls the changes in the movements which may occur

from one differential cell to the adjacent ones. There is a simple

geometrical interpretation of the compatibility conditions which

may be derived as follows.

Let a three dimensional differentially fine grid be im-

printed in the medium in the initial position, and let one of the

intersection points be marked together with the eight differential
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cells which meet there, and together fill completely the full

solid angle round the point. By the movement to the terminal

position the various cells will, in general, suffer different

distortions but must retain their contacts with one another and

with the marked point (because of the preservation of continuity),

so that together they still fill the full solid angle round the

point. Hence when the solid angle of one cell decreasesthe

corresponding angle of one of the adjacent cells must increase,

so that the sum of the solid angles of the eight cells always

adds up to a full solid angle in space. This is the geometrical

interpretation of the Compatibility Coidition.

5. Goniometry of Kinematics

The study of the kinematics of continuous media is

greatly simplified by the application of the principle of the

preservation of continuity. Instead of studying the movement

over any finite intervals of time and throughout any finite por-

tions of a medium, it will suffice to study the Goniometry, i.e.,

the variation of the movement in the infinitesimally small neigh-

borhood of an instant of time, and of a point of the medium round

the full solid angle of directions. It is from this Goniometry

that one determines at the chosen instant of time and point in

the medium the local kinematic variables as the successive time

and space derivatives of the movement then and there. Once these

derivatives are determined in sufficiently high orders, they can
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be used as coefficients of a convergent power series whichwill

then specify the movement of the medium throughout the regular

domain of time and space in which the power series converges.

Moreover, even within the Goniometry of the infinitely

small neighborhood of an instant of time and point in the medium,

the principle does not allow arbitrary variations of the move-

ments along different directions in space. Instead it allows

to predict the variations round the full solid angle of direc-

tions by showing for the development of the movement into a con-

vergent power series that the coefficients of this series, i.e.,

the local kinematic variables are tensors of various orders,

and must therefore vary round the full solid angle as linear

functions of the direction cosines associated with any one of

the indices of the tensors. This prediction is all the more

useful as the linear region covers the whole finite range of the

two angles which specify th" lirections round the full solid

angle.

The application of the principle to a determination of

the whole of the kinematics by way of the Goniometry, as described

above, is of great interest both to the theory and to the experi-

ments. For the theory it may be noted that nothing can interfere

with the linearity of the region at a point round the full solid

angle of directions, or the interconnection between the movement

there in the neighboring infinitesimally small elements of time
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and space, and the movement during finite intervals of time and

finite positions of the medium, no matter what forces of gravity,

inertia, viscosity and elasticity may be applied to the medium.

Hence the precalculation of the kinematics from the Goniometry

will be valid whatever the conditions may be under which the

medium is observed. For the experiments the instruments for

testing the kinematics can be so designed to take advantage of

the simplifications introduced by the Goniometry. In particular,

it will suffice to measure the movement at any instant of time

and point in the medium across three mutually perpendicular

planes in order to calculate it round the full solid angle of

directionally linear interpolation.

C. Theory of a Trellis Model

1. Interpretation of Principle of Preservation of Contin-

uity by Means of Lagrange Forces of Restraint

A physical interpretation of the principle can be

given by means of a theorem introduced by Lagrange, in which he

showed how one can replace any geometric restriction imposed on

freely moving particles by appropriately chosen forces of restraint.

Applying this theorem to the conditions imposed by the principle,

one can find the corresponding Lagrange forces of restraint, and

construct from them a mechanism which will guide the points of

the medium along the movements allowed by the principle and r cevent
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them from executing movements that are forbidden.

It will be convenient to formulate the geometric con-

ditions imposed by the principle in terms of invariants. The

corresponding Lagrange forces can then be determined as infi-

nitely strong forces which rigidly interconnect the points along

the said invariants, and so "prevent" the invariants from

changing. The rigid interconnection then forms the backbone of

the required mechanism.

As explained in the preceding section it will be suf-

ficient to consider the infinitesimally small neighborhood of a

point. In order to find there the invariants one may imprint in

the medium a network of infinitesimally small cells, formed by

a grid of three families of intersecting lines and surfaces, and

one may then observe the changes occurring in the grid while

the medium moves from the initial to the terminal position. Ac-

cording to the principle there will be no "diffusion" of points

of the medium from one cell of the grid to another, and points

which lie on a line or surface of the grid in a certain order,

or which lie in the intersection of two or more lines or surfaces,

will remain on that line or surface in the same order, or will

remain in the said intersections respectively, however much the

grid may have been distorted. Moreover, in a first approximation

parallel and equidistant straight lines, or plane surfaces, will

remain parallel, equidistant and straight, or plane, respectively,
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while in a second approximation one has to take deviations into

account in accordance with the conditions of compatibility- to

which the adjacent differentially small cells of the grid are

subjected. Finally, considering in the grid the. distances

between neighboring points along lines of all directions round

the full solid angle, one finds in general elongations along

some lines, contractions along others, and lines of zero elonga-
1

tions in directions between the two. The pattern of lines of

zero elongation will suffer angular changes fromthe initial to

the terminal position but will have as invariants the points of

intersections and their distances apart. Introducing then into

the pattern of lines of zero elongations infinitely strong La-

grange forces of restraint as rigid interconnections in accord-

ance with the said invariants one obtains a mechanical model.

In this model pinpointed universal joints will replace the

points of intersection, and straight rigid rods along the lines

1. In the special cases in which one observes along all direc-

ti~nsp either elongations only, or contractions only, the lines

of zero elongation cannot be found in real space but they can

still be determined in complex space so that the formal algebraic

procedure will not be affected. The said special cases are com-

paratively rare since most real materials are almost incompress-

ible so that elongations in some directions will be compensated

by contractions in others.
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of zero elongation will bridge the distances between consecutive

points on these lines. The whole mechanism incorporates all

the necessary and sufficient requirements of the principle, as

it offers no resistance against all the angular changes "allowed"

by the principle, but offers infinitely strong resistance

against all the "forbidden" changes, i.e., against all changes

of the invariants. In particular, the forbidden changes in

the points of intersection, and in the distances between con-

secutive points along the lines of zero elongation are resisted

by the infinitely strong forces corresponding to the pinpointing

of the pivots, and the rigidity (inextensibility and inflexibil-

ity) of the connecting rods. The model will be referred to as

a "Trellis Model" since it operates in the simple case of a homo-

geneous two-dimensional movement like the well-known type of

collapsible garden trellis with two intersecting series of rigid

rods pivoted to one another where they cross, and capable of

expanding along some directions while contracting at the same

time along others. The Trellis Model can be constructed between

any two positions of the medium (arbitrarily referred to as the

initial and terminal position) but the model so constructed will

not, in general, fit the intermediate positions.1

1. This is because the lines of zero elongation have different

directions in the medium when constructed for different pairs of

initial and terminal positions.
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2. Applications of the Trellis Model

There have been many useful applications of the

Trellis Model, such as the predetermination of sliplines in fa-

tigue experiments, the solution of complicated boundary problems

for anisotropic sheets of materials (in particular, parachute

fabrics, and other woven and knitted fabrics), the construction

of a new type of stretching device, a simple geometrical inter-

pretation of the conditions of compatibility, etc. However,

there is no need to burden this report with a description of

the various applications since such a description has already

been published elsewhere.

It will suffice to state here that one can determine

in a quantitative manner the lines of zero elongation, and

hence the Trellis Model, for any pair of positions of the

medium by constructing (or calculating) at every point of the

medium the two concentric strain quadrics (known as the strain

ellipsoid and the reciprocal strain ellipsoid) of which one

changes its shape from a unit sphere into an ellipsoid,

while the other changes conversely from an ellipsoid into a

unit sphere. The lines of zero elongation are then found in

either position along the cone of diameters associated with

the intersection of the two quadrics.
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Seminar on Continuum Mechanics

(Lecture IV)

Principles of Kinematics

Part II. Superposition of Movements and
Resolution into Rigid and Deformatory Components

A. Introduction

1. Generalization of Classical Theory of Infinitesimally

Small Deformations

The movements compatible with the principle of preser-

vation of continuity have been described so far relative to a

chosen Galilei system of reference in terms of kinematical vari-

ables defined as the time and space derivatives of the functions

which relate to one another the coordinates of the initial and

terminal position of the medium.

The Galilei system of reference fixed in space (as in-

dicated in Part I) will be retained, but will be used now for a

description in terms of kinematic variables corresponding to the

purely rigid and purely -deformatory components of the movements.

Such a description together with a definition of the "pure" com-

ponents had already been given in the classical theories but was

restricted to infinitesimally small deformations. Here this re-

striction will be discarded, and a description will be given

which applies to deformations of all sizes, large or small, in

movements which comply with the principle of preservation of con-

tinuity.
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In dealing with deformations of all sizes many new

problems arise both for the superposition of movements as well

as for their resolution into purely rigid and purely deformation

components. These problems have to be well understood in order

to account for and even predict, theoretically the many new

phenomena which one encounters in experiments, and which are

unexpected from the classical point of view, and sometimes have

a paradoxical appearance. The said phenomena are, of course,

already present in the case of infinitesimally small deformations

but they are then infinitesimally small of second or higher de-

gree, and thus negligible, while for large deformations they are

predominant, as then the effects of first degree become negligi-

bly small compared with those of second and higher degrees.

2. The Application of Group Theory

Group theoretical considerations will here be of fun-

damental importance since the theoretical and experimental hand-

ling of the movements, and of their resolution into purely rigid

and purely deformatory components will depend on the group prop-

erties of the movements and components. It will be seen in par-

ticular that according to whether successive movements and com-

ponents do, or do not form a commutative group one can,. or cannot,

characterize the movements by kinematic variables which are addi-

tive, since addition is always commutative, and thus incompatible

with a noncoumutative group.
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Additive kinematic variables lend themselves easily to

the application of differential and integral calculus, as the sum

of the kinematic variables associated withthe individual move-

ments in succession will then characterize the movement result-

ing from the succession. Nonadditive kinematic variables have

a nonadditive superposition law, and these require that great

care be taken with the application of the differential and inte-

gral calculus, as in this case the characteristics of the move-

ment during a differential interval of time will not be iden-

tical with the differences between the characteristics at the

beginning and end of the interval, nor will the characteristic

for a finite interval of time be identical with the integral

over the characteristics associated with the movement during a

differential interval of time.

It will suffice here again (as in Part I) to discuss

explicitly only the Lagrangian point of view, as one can deduce

from it the Eulerian one, or any other point of view, by appro-

priate transformations of the variables and functions used.

For ease of discussion it will often be convenient to

use a system of reference fixed in a point of the medium instead

of being fixed in a point of space. This will eliminate the

purely rigid translations of the medium, which are irrelevant

for most of the problems here considered. Whenever required, the

translations are reintroduced by the application of an appropriate

transformation of the system of reference.
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B. The Superposition and Resolution of Movements

1. The Laws of Superposition

An all the movements and their components are assumed

to satisfy the principle of preservation of continuity, one can

characterize them throughout finite intervals of time, and for

finite portions of the medium by (as in Part I) the goniometry

of the local kinematic variables measured in the infinitesimally

small neighborhood of any instant of time, and point in space

round the full solid angle of directions. The local kinematic

variables are again tensors of various orders, and it will suf-

fice here to consider them in the interior of a differential

cell and to describe them there as homogeneous, i.e., independent

of the space coordinates. (If and when necessary, the tensors

can be extended through time and space, and developed into a con-

vergent power series of the time and space coordinates and so

provide a characterization of an approximation of second and

higher degree.) Introducing then a system of reference fixed in

the point of medium considered (thereby eliminating the purely

rigid translation), the movement described in terms of Lagrangian

variables will appear in the form

x I O. where (1)

(V S
Y ~ eke" (2)

. e~e"
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For an investigation of the superposition of an or-

dered succession of the local movements at a point of the medium,

one considers a differential cell surrounding the point in three

positions, (0), (1), and (1) say. Using then for the positions

(0) and (1) the same notation as in Part I, and denoting by a

bar the quantities referring to the position (i) one finds for

the local movements (01) (11) and (01)

= (3)

-£.v (4)

Si S0.1Y (5)

where the ordered succession of the local movements (01) and

(11) produces by superposition a resultant local movement (01)

for which the superposition law is derived from (3) (4) and

(5) as

Y = -fY (6)

One deduces from (6) that all local movements form by

superposition a group (i.e., form an assembly which satisfies

the four conditions necessary and sufficient for a group) but

this group is not commutative, as the superposition of local

movements according to (6) is by tensor dot multiplication, and

this is not, in general, independent of the order of succession.

One may not reintroduce the system of coordinates fixed

in a point in space, and so take into account the translations

of the medium. For the superposition law it can then be shown



4-6

that the translations in the successive local movements add up

to the translation of the resultant local movement.

While the laws of superposition are comparatively

simple, the laws of resolution are of considerable complexity.

2. The Laws of Resolution

An arbitrarily given movement will in general be a

composite one, involving not only a change in the outer location

of the medium, i.e., relative to a system of reference fixed in

space, but also in the inner location, i.e., in the relative po-

sitions of the points of the medium to one another. While the

changes in the outer location are independent of the internal

structure and associated with a rigid movement, one finds that

the changes in the inner location will be associated with a

deformatory movement, and will bring into play all the complexi-

ties of the internal structure. It is for this reason that any

given composite local movement will have to be resolved into a

purely rigid and a purely deformatory component.

It will henceforth be understood (unless explicitly

stated otherwise) that all movements and their components, as

well as the associated kinematic variables will be local ones,

i.g., related to the neighborhood of the point considered, and

for ease of reference the term local may then be omitted.

Because of the group formation, it is possible to carry

out the superposition of the movements, as well as the resolution
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into the purely rigid and purely deformatory components within

the framework of the Goniometry of the differentially small cell

surrounding the point of the medium considered. While throughout

all the movements (01), (I) and (01), the distances between the

points of the medium in the differential cell remain infinitesi-

mally small, one finds for the said movements that the associated

changes of directions, and percent elongations are of any amounts,

large or small, so that the purely rigid and purely deformatory

component will have unlimited amounts of rotation and of-deformation

In order to define algebraically the purely rigid and

purely deformatory movements, one considers the changes in length

which are suffered during the movements by the vectors irradiat-

ing in all directions from the point of the medium considered.

One finds that the ratio of the squares of the length of the

vectors in the movement (01) is given by

S -I -xYY ix (7)

where I.I is symmetric according

V- ' - (8)

Now let If be written asf or 8 according to whether the

movement is purely rigid or purely deformatory.

One then finds for the purely rigid movement that its

representative tensor r2 must have orthogonal symmetry since

for a rigid movement the ratio in (7) must be equal to unity, viz.

(..S "I (9)
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and one finds for the purely deformatory movement that its rep-

1•resentative tensor 0 must be symmetric, according to

+(10)

One can calculate the main values and main axes of

the tensors n and e from the secular equation

Te - Tje (for T a or

where T' is one main value, and e a unit vector in the di-

rection of the associated main axis. The result can then be

1. To prove this one writes first formally e as a product

of the symmetrical tensor iYA' and an unknown tensor V

viz;.

9 I (11)
One then finds from (11)

and hence

Y.;- I (13)

which means that V must be a t Ot f orthogonal symmetry,

and thus repnesent a rotatiol. Ih 6J4r that E should be a

purely deformatory movement onb viil tih postulate that

in (11) should be unity, so that

e- .( '.N')' a.,a... (14)

where the + sign is chosen because 'represents an elongation

ratio and is therefore essentially positive.
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interpreted geometrically as follows:

The purely rigid movement, or what amounts to the same,

its representative orthogonal tensor f acts on all the vectors

S in the position (0) as an operator which rotates them all by

the same angle round a certain axis of rotation. To calculate

the angle and axes of rotation one notes that an orthogonal

tensor has three main axes with main values, 1, e and
-iW

e where is the angle of rotation. Of the three main

axes only one is real, and this corresponds to the main value

1 and points along the direction of the axis of rotation.

The purely deformatory movement or, what amounts to

the same, its representative symmetrical tensor Q acts on all

the vectors S as an operator which subjects them all to the

same elongations (or contractions) along certain three mutually

perpendicular directions. To calculate said elongations and

directions one notes that a symmetrical tensor has always three

real values and three real mutually perpendicular main axes, and

these determine respectively the amounts and the directions of

elongation (or contraction) known as the main elongation ratios

and the main axes, viz.,

i - 1, (for i - 1, 2, 3) (15)

It should be noted that the movements defined above

as purely rigid and purely deformatory are mutually exclusive

only insofar as they refer to the whole collection of vectors
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lo irradiating from the point considered. With regard to this

collection the pure rigid rotation does not involve any deforma-

tion, and the purely deformatory movement does not involve any

rotation. However, this mutual exclusiveness does not apply

to any single vector S. For such a single vector the purely

rigid movement does not involve a deformation but the purely

deformatory movement involves in general a rotation as well as

an elongation, and this rotation vanishes only for the main axes,

and for the linear average, or the resultant of the rotations

suffered by the individual vectors of the whole collection.

In the definitions given above, the coordinate system

had been fixed in a point Gf the medium. Proceeding then to a

system fixed in a point in space one has to take account of the

translations. These are always purely rigid so that the most

general rigid movement will be a translation combined with a

rotation.

Having defined separately the purely rigid and the

purely deformatory movement in terms of algebraic equations,

one can now carry out the resolution of any given continuous

movement into an ordered succession of two component movements,

one purely rigid, and the other purely deformatory. The two

components will in general not commute, and one will therefore

have to consider an alternative between two resolutions (or

superpositions) according to which of the components is anterior
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and which posterior in the succession. Both resolutions and

superpositions will have physical significance, and will there-

fore have to be specified separately. Accordingly, one finds

for the movements (01) (11) and (03)

'V i:.~,(16)
(17)

where the index a or p refers to the anterior or posterior

position in the sequence. One then deduces from (16) for the

movement (01)

ThY'[+ ('. Y)- 4f.{)i- (19)

- (Y'. ''  (20)

This means that the purely rigid component is uniquely defined

in (19) by the orthogonal tensor SI, while the purely deforma-

tory component will be given by (20) and (21) and will be equal

to either e. or 0? according to whether it is anterior or

posterior to the rotation. The two tensors 0. and Op differ

from one another only by their orientation so that the anterior

one can be transformed into the posterior one by the application
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of the rotation L . A resolution of the movements (11) and

(01) may be carried out in terms of V and and yields

results analogous to (19), (20), and (21).

The equations (19) to (21) introduce new sets of kine-

matic variables Li , ( , Gp , which are defined as func-

tions of the variables ' defined in Part I. The new varia-

bles will serve the purpose of specifying separately the purely

rigid and purely deformatory components in the movement (01).

Using then equations analogous to (19) to (21) for the resolu-

tion of the movements (11) and (01) one can now formulate the

superposition law (6) in the new kinematic variables as

A~IG. w(~~e..Y' (22)

W (24)

1. It may be noted that the main axes of G6 mark in the initial

position the directions of lines in the medium which are going to

suffer the extreme elongations (or contractions) through the sub-

sequent movement; similarly the main axes of G mark there the

directions which the same lines occupy in the terminal position,

and the tensor L represents the rotation of the axes of

into those of . One can then deduce the main values of

and Op by comparing (15) with (21) and (22), and finds

( .)"- ( A '|e "1) " ) (for i - 1, 2, 3)
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Equations (19) to (21) and (22) to (24) give respectively the

laws or resolution into, and superposition from purely rigid

and purely deformatory components.

The resolution of the movements into purely rigid and

purely deformatory components makes it necessary to resolve in

a like manner the conditions of compatibility which were dealt

with in Part I of the kinematic for unresolved movements only.

The conditions are given here only for the purely deformatory

components because these are of particular practical importance.

The conditions can be formulated with the help of a differential

operator, known as the Cauchy-Rieman Curvature tensor say.

This tensor is of fourth order and must vanish according to

0 fo , , (25)

where

I_ a JMI" +4 5 41 -11 1 (26)

and the { ) indicate the Christoffel differential operators of

second kind. The geometrical meaning is again the one discussed

in Part I, and illustrated by a Trellis model of adjoining dif-

ferential cells.

1. For proof see Levi Civita, "The Absolute Differential Cal-

culus," p. 198 (Blacky 1947).
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C. Discussion

1. General Movements

In a given general movement, the medium moves along a

certain path through an ordered series of positions, (0), (1),

...(n)..., (1) say. Starting from an arbitrarily chosen initial

position (0), one can imprint in the medium a triad of mutually

perpendicular directions along which the medium suffers the maxi-

mum elongations (or contractions) between the positions (0) and

(1). This trirectangular triad is fixed in the medium but

changes its orientation in space from that of the main axes of

6 in the position (0) to that of the main axes of in the

position (1). There is an infinite variety of different paths

by which the medium could move from the position (0) to (i),

and among these one can always find a privileged one, with posi-

tions (0), (1)*..(C) ..(n)%..,(1) say, such that the trirectangu-

lar triad imprinted in the medium remains trirectangular in all

the positions of the privileged path. The algebraic condition

for the privileged path is that the tensor9; and

should be coaxial in a system of reference fixed in space, and

one then finds from (22) to (24)

.(27)

* c*1i~.~).~j *..(.i-'.~.WV) (29)
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where the quantities with a star refer to any of the movements

( Oc* ) and ( c*T ) along the privileged path. In this case

one finds that there is coaxiality in the medium (but not in

space) of all the tensors of the pure deformations and of their

time derivatives (deformation velocities, accelerations, etc.)

so that one can introduce a system of reference with axes fixed

in the medium along the imprinted trial of trirectangular direc-

tions such that all the said tensors are simultaneously in

diagonal form, i.e., on their main axes.

The actual path of the medium will, in general, be

different from the privileged one (as, e.g., in laminar flow).

Then the tensors 9 and 5 will not be coaxial in the

system of reference fixed in space, and in that case it will

be impossible to find any trirectangular triad which can be

imprinted in the medium and remains trirectangular in all the

positions of the actual path. The directions which in the

medium suffer the maximum elongations (or contractions) will

rotate in the medium from one position of the actual path to

another, and there will be no coaxiality in the medium (nor

in space) between all the various tensors denoting the pure de-

formations, and their time derivatives (deformation velocities,

accelerations, etc. ), each of these tensors having its own

orientation in the medium (and in space), and this orientation

is in general different from that of any other of the tensors.
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(Illustrations by simple two-dimensional shearing

movements of finite amounts)

The distinction between the privileged path and the

actual one is not apparent when only two positions in the move-

ment of a medium are considered (as is done in most textbooks),

nor does it play a role in the classical theories of infinitesi-

mally small deformations. It is, however, of paramount impor-

tance in the theories of deformations of all sizes (large or

small), and in particular in the linking up of the movements

and the forces coexisting in a differential cell of the medium.

2. Special Movements

In the movements of a medium through an ordered series

of positions (0) (l)...(C)...(n)...(J), there are two special

cases of particular interest, one in which the successive move-

ments (C(C+l)) are all purely rigid, and the other when they

are all purely deformatory.

For the case in which all the successive movements

(C(C+l)) are purely rigid one has

111 and (30)

* W with (31)

I .&- 0 -m

so that in this case the superposition laws (22) to (24) simplify

to
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0 l. with (32)

Ga~s!(33)
This means that purely rigid movements in an ordered succession

form a group since the resultant movement is purely rigid, but

the group is, in general, not commutative (A.W 0 WJQ ) except

when the rotations of the successive movements are coaxial (and

. =io.I1 ). Thus, in general, there will be no possibility of

introducing here additive kinematic variables while in the excep-

tional case of coaxiality. Such variables can be introduced,

and are found by taking the logarithms of the superposition

law viz.

L" - 1. + g (for 12 coaxial to W) (34)

It can be shown that the logarithm of the orthogonal tensors

are antisymmetric tensors which represent the angles of rota-

tion, and these are additive for successive coaxial rotations.

For the case in which all the successive movements

(C(C+l)) are purely deformatory the result is of much greater

complexity. One has here

*'+o .a e 0,, and (35)

#jm - 9 with (36)

i - g. - (37)

and this gives a superposition law
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4 e., (38)
or resolved

(39)

(40)
,.( .I. 1 )V .o(41)

This means that purely deformatory movements in an ordered suc-

cession do not form a group, and do not commute asA yl I, and

84 j %9J. , except when the successive purely deformatory

movements 0 and 9 are coaxial when one finds A w I and

9-.9 -.9.1 . Again, in general, it will not be possible to

introduce here additive kinematic variables, but such variables

can be introduced for the exceptional case of coaxiality by

taking the logarithm of the supermotion law, viz.

Cn a *&iO.L•.9 (for coaxiality (42)
of 0 and . )

D. The Kinematic Variables

The kinematic variables here introduced may serve for

a description of the movements in terms of purely rigid and purely

deformatory components, as given by the vectors of translation

and the various tensors of rotation and deformation. It will

be completely arbitrary, and a matter of convenience, whether

one uses the said vectors and tensors, or any scale functions

of these. In fact, various investigators have used different

such scale functions, including the logarithms of the tensors

G. and 1p , or the squares of these tensors, etc., or the

squares minus unity, etc.
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The independence of the arbitrary choice of the scale

function will have to be considered for the establishment of

the relations between the movements and the forces, and it will

be seen that these relations will appear in the simplest form

when some particular scale functions are chosen, and the move-

ments and forces are referred to the same geometric elements.

E. Differential and Integral Calculus of Movements

The differential and integral calculus in its simplest

form applies to variables whose increments are additive, and

hence commutative. When the calculus is used for the descrip-

tion of movement with rotations and deformations of any size,

large or small, complications arise because the kinematic varia-

bles used in this description have increments which, in general,

obey nonadditive and noncommutative laws of superposition and

resolution, and these have to be taken into account in the appli-

cation of the calculus. A typical example of the complications

which arise here can be seen in the definition of the deforma-

tion velocity by time differentiation, and in the calculation

of the total deformation by a time integral. In the time dif-

ferentiation one has to distinguish between the differentiations

of ea , ep , % and 4P , each of which defines some defor-

mation velocity, and neither of these gives by integration over

the time the value of the total deformation 6. or Op which
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the medium has suffered. The complications mentioned above do

not arise in the special movements, discussed in the previous

sections, when thesc movements are described in terms of the

kinematic variables with commutative and additive increments

according to (34) and (42).
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Seminar on Continuum Mechanics

(Lecture V)

Principles of Dynamics

A. Introduction

1. Different Approaches to the Problem of the Mechanical

Forces

Dynamics is concerned with the distributions in space

and time of the mechanical forces which will be described in

terms of dynamical variables.

In spite of several attempts at unification, it has

not yet been possible to present all the different kinds of

mechanical forces under a single aspect.

The most promising approach in this direction has

been made by Einstien in his theory of general relativity in

which he introduces a certain space-time metric (i.e., a certain

set of yardsticks, clocks, and rules of measurements) which

allows to account for the mechanics of rigid media in terms of

this metric only without introducing forces of any kini. Un-

fortunately, the theory is limited to rigid media, and there

has been no success in trying to deal with the general continuum

mechanics of nonrigid (i.e., deformable) media in terms of geome-

try only, i.e., without introducing forces. For this reason

we shall exclude a discussion of Einstein's general relativity

theory from the Seminar on Continuum Mechanics.
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An entirely different approach has been made by La-

.grange. He did not try to avoid the introduction of forces but,

on the contrary, developed a mathematical formalism by which it

is possible to replace any geometric conditions imposed on the

freedom of movement by an equivalent set of forces, referred

to as the Lagrange forces of restraint. Some examples of these

forces have already been mentioned in the lectures on the Kine-

matics where it was shown that any invariants in a movement

reduce the freedom of movements, and this reduction is equiva-

lent to the introduction of infinitely strong Lagrange forces

of restraint which "keep the invariants invariant," i.e., pre-

vent their changes in any way. (See the Trellis Model.) We

shall use Lagrange's concept of forces of restraint throughout

the lectures in this Seminar, as this concept has proved itself

to be very useful for the formulation of the laws of Continuum

Mechanics. The Lagrange forces of restraint defined so far

have been limited to forces which do not produce any work as

they extend in directions along which the movement is zero or

in directions which are in an algebraic sense perpendicular to

the movement. It seems possible, although it has not yet been

done, to proceed further and define all the other mechanical

forces, 1 ., the mass forces of inertia and gravity and the

traction forces of elasticity and viscosity as Lagrange forces

of restraint irrespective of whether they do or do not produce
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work. This could be done by introducing certain systems of

reference arbitrarily as privilege systems (they are termed

Galilei systems of reference), and define relative to these

systems first the Newtonian forces of inertia, as forces of

restraint, and then define as mechanical forces of restraint

all quantities which can equilibrate the inertia forces. Even

if one adopted this procedure the whole scheme would still in-

volve the arbitrariness of the introduction of the Galilei sys-

tems of reference, and it would also lack any principle which

would allow us to determine how many kinds of mechanical forces

have to be considered and what kinds one should choose. We

shall therefore not use in the lectures of this Seminar such a

generalization of the Lagrange forces of restraint but intro-

duce the mechanical forces according to a third approach to the

problem.

The third approach here considered is based on Newton's

three laws of inertia, on the principle of equilibrium of forces,

and on the Galilei systems relative to which these laws are valid.

It will be assumed that Newton's laws, as well as the derivation

and formulation of the principle of equilibrium of forces, and

the Galilei systems of reference are well known from the text-

books so that it will suffice here to refer to some specific

items where difficulties are often encountered. This will be

done in the following sections.
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B. Choice of Systems of Reference

1. Galilei Systems of Reference

With respect to Newton's laws of inertia, the various

possible systems of reference are not equivalent, and there is

one privileged group, known as the Galilei systems of reference

whose measuring rules and devices ("rigid" yardsticks and me-

chanical clocks) are calibrated in accordance with Newton's

laws of inertia.

The Galilei systems of reference can be transformed

into one another by a group of transformations known as the

Galilei transformations. They are linear in the coordinates of

space and time, and are found as the linear transformations

which leave Newton's laws of inertia invariant.

The whole of the Mechanics is then so formulated rela-

tive to any chosen Galilei system that all the laws of Mechanics

remain then invariant under the group of Galilei transformations.

Thus, the Galilei group of transformation defines the space and

time symmetries in Mechanics which are of fundamental importance

in all mechanical problems.

The symimetry in space only consists of three different

types of symetry operations, .vl., translations, notations and

mirror inversions, and of all combinations of these operations.

The symmetries corresponding separately to the three types of

operations are referred to as Homogeneity, Isotropy, and Parity.
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The space time symmetry consists of one type of opera-

tion only, viA.,

x x -- ct

t'= t -

and of combinations and repetitions of this operation in all

three dimensions in space, when c represents a constant velocity,

t an arbitrarily chosen fixed instant of time, while x and t,

and x' and t' represent the coordinates in space and time be-

fore and after the transformation.

2. Non-Galilei Systems

When a system of reference is chosen which is fixed

to the earth, or to any material body which moves relative to

a Galilei system in a manner different from that allowed by the

Galilei transformations, then it can be transformed from a

Galilei system by a transformation which lies outside the group

of Galilei systems, and thus a non-Galilei system is produced.

The working with such systems is rather difficult be-

cause one has here to introduce new fictional additive forces

before one can apply the equilibrium of forces or other laws

of mechanics. These fictitious forces are often referred to as

Corriolis forces.

As an example consider the movement of a pendulum

(Foucauld's pendulum) relative to a system of reference fixed
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to the earth. Because of the rotation of the earth the plane

of movement of the pendulum does not appear to be invariant

but to rotate relative to the chosen (non-Galilei) system of

reference, and thus to trace a sort of Lissajou's figure on a

horizontal plane.

C. The Principle of Equilibrium of Forces

Once the Newtonian forces of inertia have been intro-

duced relative to a Galilei system of reference, one can pro-

ceed to a definition of mechanical forces of different kinds

by the assumption of a principle of equilibrium of forces, ac-

cording to which there is an equilibrium of all mechanical

forces, including the forces of inertia under all conditions

of rest or motion, and at every point in the medium for all

surfaces through the point, and all portions of the medium.

By this principle of equilibrium one can define any physical

quantity as a mechanical force if it can equilibrate the inertia

forces, and one can measure the mechanical force by its equal

and opposite inertia force. In this introduction of mechanical

forces one has to rely on empirical data to determine the number

and kind of mechanical forces which are required for the formu-

lation of the laws of Continuum Mechanics.

1. Equilibria in Rigid Mechanics

In the theory of rigid mechanics one considers in addi-

tion to externally applied driving forces only the mass forces,
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j.L., forces which act on the mass of the rigid bodies.

From the empirical knowledge of free falling objects

on the earth, and of the movements of the planets round the sun

one defines and measures the forces of gravity by their equi-

librium with the forces of inertia. There is then also an

equilibrium of the moments of forces round any arbitrarily

selected axis of rotation.

In considering these equilibria it is important to

note that the inertia forces are proportional to the accelera-

tion, i.e., to the second time derivative of the displacement,

irrespective of the value of the displacement and of other time

derivatives. In particular, the inertia forces can be present

at an instant when the velocity is zero, i.e., when there is no

movement, such as for a pendulum at the instant when it changes

from an upward to a downward movement and has at that instant

the velocity zero. At that instant the inertia force of the

pendulum has even its maximum value, while it is zero when the

pendulum passes through its equilibrium position, and its veloc-

ity has its maximum value.

2. Equilibria in Continuum Mechanics of Deformable (Nonrapid)

Media

(a) The Definition of the Traction Forces and Stresses

in Relation to Test Areas

In the Continuum Mechanics of deformable media the

empirical knowledge of the behavior of such media has made it
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necessary to introduce in addition to the types of mechanical

forces already considered in rigid mechanics a new type of

mechanical forces, called traction forces, which act at every

point in the medium across a surface area passing through the

point.

To define and measure the traction forces exactly,

one has to consider at every point in the medium the conditions

under which they can equilibrate the inertia forces (since all

mechanical forces are defined and measured through such equi-

libria). To produce these conditions one uses an idealized

imaginary process by which an infinite small sphere of the

medium surrounding the point considered is bisected by a plane

into two equal parts. According to Newton's first law of in-

ertia there will be equal and opposite traction forces acting

on the areas of the two sides of the bisecting plane, and these

traction forces would drive the two parts of the medium away

from one another, or press them against each other. The strength

and direction of the traction forces can then be measured by

applying exterior forces to the two parts of the sphere, ob-

serving the resultant accelerated movements of the two parts,

and calculating the traction forces as the differences between

the externally applied forces and the inertia forces. (In the

simplest case the external forces are so chosen that no accelera-

ted movement of the two parts results, and there the inertia forces

are zero and the traction forces are measured by the compensating
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external forces.) One finds that the traction forces are pro-

portional to the area on which they are tested, if the size of

the test area is infinitesimally small, approaching to zero

in the limit. At every point in the medium one then considers

the traction forces across test areas of all orientations

round the full solid angle of directions and defines at every

point in the medium the stress by the operator (tensor) which

acts upon the test area and transforms it into the traction

force across that area, viz.,

dFm= dB'] Q- (

where one denoted by

dFm  the components of the infinitesimally small traction

force, defined as contravariant vector
1

dBi  the components of the infinitesimally small area tensor

defined as double contravariant antisymmetric

1 All forces are usually defined as covariant vectors. This

definition arises from the postulate that the energy should be

scalar invariant, resulting from the scalar multiplication of

the force with the contravariant vector which conventionally

represents the path along which the force acts. For our pur-

poses it will be more convenient to define the traction forces

as contravariant vector by postulating its equilibrium with

the inertia force which as mass times acceleration is repre-

sented by a contravariant vector.
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tensor of second order, and by

Qj. the mixed component of the stress defined as a tensor of

third order, which again is antisymmetric in the

indices ij (since any symmetrical part in these

indices can be equated to zero as its contribu-

tion to the result of the multiplication (1) is

zero).

One can simplify equation (1) with the help of the two

tensors of third order which represent the element of volume and

of reciprocal volume (se . Brillouin l.c.). By multiplying

with one or other of these tensors and contracting over the in-

dices ij one obtains pseudotensors which will be indicated by a

stroke at upper index level for volume densities and at lower

index level for volume capacities of tensors. For the areaone

obtains a volume capacity of a tensor of first order (often re-

ferred to as an "axial vector") with covariant components dA_,

say, and for the stress a volume density of a symmetric tensor

kin-of second order in double contravariant components P , say, yjz.,

g -1/2 - = ij and (2)

g-1/2 pkm- Q..m ..M= i -Q (3)

where g -1/2 and g 1/2 denote respectively the reciprocal

volume and the volume of the unit cell in a coordinate system

with a metrical tensor g.k" (The multiplication of the tensor

capacities and tensor densities with these factors insures in-

variance of the equations against all transformations of the
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coordinate system). It will be understood the indices i,j,k

represent in a righthanded system cyclical permutations of'the

indices 1,2,3, and in a lefthanded system the indices of

cyclical permutation of 3,2,1, with the normal to the test

area being counted positive in the outward direction.

In all the problems of continuum mechanics it has not

been necessary to introduce any further forces, (such as may

act on a line through the point of the medium considered, and

may be proportional to the length of that line) so that in the

equilibria encountered in the mechanics of deformable media,

one has to consider only the mass forces (of gravity and iner-

tia) and the external driving forces which are already known

from the mechanics of rigid media, and the newly introduced

traction forces, as defined above.

When one applies the principle of equilibrium of

forces one has to distinguish between two cases, according to

whether or not the traction forces considered refer to surface

areas which pass through the same point, or surface areas which

enclose a mass of the medium such as the surface areas of a dif-

ferential cell. In the former case the traction forces must

1. Problems in which one has to consider surface tension effects

are regarded here as outside the scope of the continuum mechanics

as discussed in this series of lectures. To account for surface

tension effects one has to introduce additional forces correspond-

ing to that tension.
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establish equilibria among themselves since the mass forces
1

are then zero because the masses involved are zero. In the

latter case the equilibrium will be established between the

traction forces across the surface areas of the differential

cell and the mass forces of inertia and gravity acting on the

mass of the cell.

(b) Equilibria of Traction Forces Acting on Test Areas

Through a Point

At every point in the medium one has to consider three

equilibria of the traction forces which are conveniently written

in terms of the stresses, '.e., of the traction forces reduced

per unit area, and considered at every point on bisecting planes

1. One can approximate to the conditions of this case by taking

a differential cell and going to the limit of the dimensions

of the cell approximating to zero. The traction forces then

vanish with the area, j.e., the second power of the cell edges

while the mass forces vanish with the volume, i.e., the third

power, and can therefore be here neglected against the traction

forces. This procedure, which is adopted in all the textbooks

is less satisfactory than the one suggested above, since the

textbook procedure does not make it clear when the mass forces

can be neglected, and when they have to be taken into account

in a differential cell.
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of all orientations round the full solid angle of directions.

The first equilibrium results from the definition of

the traction forces and stresses acting across the two sides

of the test area of the bisecting plane, viz.,

-1/2 _. '
g dAkm dB 

3

p (dAk+d _) + 0 for (5)

-/2 ~jig N dB z

A second equilibrium results from the assumption of a

continuity principle for the traction forces. This principle

postulates (similarly to the one established for the kinematics)

that the traction forces should be analytical functions of the

area vectors and hence developable in the neighborhood of each

point in the medium into a convergent power series with constant

coefficients. Neglecting the higher powers against the linear

terms in the limit of all area vectors emanating from the same

point, one finds equations (1) to (3). The equilibrium deduced

from these equations is usually referred to as the equilibrium

on a tetrahedron. It would, however, be more accurate to speak

of the equilibrium on four planes passing through the point,

parallel to the faces of a tetrahedron and having test areas

equal to the sizes of the said faces. Taking account of the

conventional assignments of positive and negative values to these

test areas, one then finds

pp - + dN + A + ) = 0 for

(6)
(dA + dA' + dA" + dA"') - 0
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There is a third equilibrium to be considered which

is usually referred to as the condition of symmetry of the

stress, and which may be formulated as

dAm_ _km - 0 (7)

The three equilibria described above define condi-

tions of the traction forces and stresses at any point in the

medium across planes of all orientations passing through the

point in all directions round the full solid angle.

(c) Equilibrium of All Forces Acting on the Mass and

Surface Areas of a Differential Cell

The traction forces (and stresses) have been consid-

ered in the previous paragraph in their variation at a point

round the full solid angle across planes which all pass through

the same point. Now, it will be necessary to consider the varia-

tion of these forces from one point to another along the edges

of a differential cell. It is found that the traction forces

acting on the three pairs of parallel faces of the cell have

differences which are proportional to the lengths of the edges

of the cell, and that a reduction of these differences per unit

length produces a force which is proportional to the volume,

and hence to the mass of the cell. An equilibrium is then es-

tablished between this mass force, and the mass forces of gravity

and inertia, v

3( 1 Gp k +G k + 0 (8)
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where Gk  and j k are the components of the contravariantly

defined forces of gravity and inertia.

D. The Dynamical Variables

1. Goniometry of Dynamics

The dynamical variables are introduced in order to

describe in a quantitative way the distributions in space and

time of all the mechanical forces. This description is given

in terms of the externally applied forces and all the mechanical

forces which enter into the equilibria discussed in the preced-

ing paragraphs. It follows from these equilibria that the go-

niometry of the forces again provides the key to such a descrip-

tion, as all the equilibria refer to the infinitesimally small

neighborhood of a point in the medium in the limit of the di-

mensions of the differential cell approximating to zero.

It is conventionally agreed that at each point in the

medium one chooses as dynamical variables the components of the

tensors and pseudotensors of various orders which describe the

mass forces of inertia and gravity, and the traction forces, or

stresses present at the point. To describe then the distribu-

tion through space and time, one proceeds by passing from the

tensors defined at a point to appropriately extended fields of

these tensors.
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2. The Superposition Law

If one superimposes two states of stress in the

neighborhood of the same point in the medium, the resultant

state of stress will be the sum of the two superimposed ones,

if all the stresses are reasured in terms of the tensor density

kmn-P . In short one finds here an additive superposition law,

viz.,

pki- km - - km-P +p - P

kmn- km-where P and p denote the two superimposed states of

stress and P the resultant one. This makes it possible to

apply to the dynamical variables the differential and integral

calculus without any of the complications encountered in the

application of the calculus to the kinematic variables (see

preceding lecture).

The conventional choice of the dynamical variables

pkm- is, of course, arbitrary and may be replaced by the choice

of any scale function of Pkm- whenever this appears to be ad-

vantageous for algebraic calculations or graphical representa-

tions. In practice, scale functions have been introduced only

for graphical representation of the stresses (there are in

classical theory four different quadrics used for such represen-

tations), while for algebraic purposes one uses the convention-

ally agreed pseudotensors, because they already obey a simple

(additive) superposition law, and the introduction of scale
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functions here would necessitate a more complicated formulation

of this law.

E. Application to Boundary Problems

The dynamic conditions existing at the boundaries of

the medium under consideration require a special study.

Two extreme cases may be mentioned here by way of ex-

amples, one referring to free boundaries, and the other to rigid

boundaries. In both cases the conditions are assumed to be so

chosen that the mass forces of gravity and inertia can be ne-

glected, and that the sample of the medium is a plane sheet

with a circumferential boundary which in some parts is free and

in other parts fixed in rigid grips. One may then use the grips

to apply to the gripped parts of the boundary, in the plane of

the sheet forces and/or displacements of any direction and

amount, and inquire into the states of stress at the free parts

of the boundary, and at the parts held in the rigid grips.

By applying the principle of equilibrium of forces,

it can then be shown that the state of stress at every point of

the free part of the circumferential boundary is a simple pull

(or push) tangential to the circumference at that point, irre-

spective of the directions and amounts of the forces and/or

displacements applied to the gripped parts of the boundary, and

irrespective of the form of the circumference and of the mechan-

ical properties of the medium.
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It can be similarly shown that the state of stress at

every point of the rigidly held part of the boundary is such

that the stress component normal to the boundary always ap-

proeches to zero, except in an area near the corners of the

boundary. The size of that area will depend on the properties

of the medium, and on the forces and displacements applied to

the grips.
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Seminar on Continuum Mechanics

(Lecture VI)

The Principles of Mechanical Properties in Continuum Mechanics

Part I. Instrumentation for the Measurement
of Mechanical Properties

A. Introduction

1. Theoretical Aspects

In Continuum Mechanics use is made of the transforma-

tion theory of metrical systems of reference, on the basis of

which certain principles of symmetry, of continuity and of equi-

librium of forces are derived for the Kinematics and Dynamics as

set out in the previous lectures. These principles are regarded

as fundamental, and provide the theoretical aspect for the in-

strumentation of the metrical system of reference, and for the

mechanical properties here conceived as the parameters which

interrelate the kinematic and dynamical variables that coexist

in the medium at every instant of time and every point in space.

The said theoretical aspect, however, provides for the instru-

ments only the laws of calibration, and an empty systematic

register for the infinite variety and complexity of mechanical

properties in accordance with all the possible linear and non-

linear interrelations between the coexisting kinematic and dynam-

ical variables. It will therefore be necessary to supplement

the theoretical aspect with an empirical one which would use as
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a system of reference instrumentation which was designed and

calibrated in accordance with the theory, and which would allow

to fill the empty theoretical register for the mechanical prop-

erties with observed numerical data.

2. The Empirical Aspect

The problem of suitable instrumentation for the empir-

ical aspect has been approached in two different ways. One ap-

proach starts with the consideration of the kinematic and dynamic

conditions under which the medium is used in practice, and then

proceeds to the development of instrumentation in which measure-

ments can be taken of the kinematic and dynamic variables while

the medium is subjected to experimentally controlled conditions

which approximate as closely as possible to those under which

the medium is to be used in practice.

This approach is widely used in industry for the con-

trol of production processes, for the working out of specifica-

tions, etc., and is there of great value. However, we shall not

deal with it here since the results obtained in such measurements

can contribute only little to a better understanding of the me-

chanical properties of the medium which are revealed in a more

comprehensive manner by the second approach. Here one starts

from the theoretical conception of mechanical properties as the

parameters which specify the relations between the coexisting

kinematic and dynamic variables and which can be determined as
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coefficients of the development of the relations into conver-

gent power series. The instrumentation is then so designed as

to approach to an ideal which takes into account the distribu-

tion of the kinematic and dynamic variables in time and space

so as to cover for every point considered

(a) the whole solid angle of directions in space and

the development in time

(b) the whole range of kinematic and dynamical condi-

tions considered

(c) the whole range of different mechanical properties

of media which are compatible with the fundamental principles

of kineratic and dynamics.

3. The Goniometric Design of Instrumentation

For the design of instrumentation approaching to the

said ideal, it is important to note that one can describe

as fields of tensors of various orders all the kinematic and

dynamic variables, as well as the parameters which specify the

interrelations between these variables, and which determine the

mechanical properties. (This follows from the transformation

theory in combination with the principles of preservation of

continuity and equilibrium of forces, as set out in the lectures

on the kinematic and dynamics.)

The tensor character of all the quantities to be meas-

ured suggests that the Goniometry should be the keynote of the
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design of the instrumentation for the measurement of the me-

chanical properties of a medium, just as the goniometry domin-

ated the determination of the kinematic and dynamic variables.

The advantages of such a design are that the measurements of the

components of the said variables across three mutually perpen-

dicular planes will suffice for a complete determination of the

values of the components at the point considered round the full

solid angle of directions, and for an equally complete determina-

tion of the mechanical properties there.

The conventionally designed instruments such as the

capillary-viscometers, Conette instruments, etc., can neither

singly nor in combination provide the means for measurements to

be taken across three mutually perpendicular planes, so that

it had become necessary to design instruments of a goniometric

type which are referred to as "Rheogoniometers."

B. Description of Instruments

1. The Rheogoniometer

The actual instruments constructed as Rheogoniometers

approach to the ideal but are still far from achieving it.
1

1. The first model was designed by the author in collaboration

with Mr. S. M. Freeman, while later improved models were devel-

oped in collaborationwith Mr. J. Roberts, the Ministry of Supply

and the Manufacturers, Messrs. Farol Research Engineers, North

Bersted Boasnor-Regis, Sussex, England.
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The instrument, diagrammatically illustrated in Fig. 1,

consists of a vertical, high precision vee-bed carrying the slide

on which the torsion measuring head 'P' is mounted. The axis of

the torque and the gap for the material under test are thus lo-

cated to the required high degree of accuracy.

The material under test is held in a gap 'A' between

two boundary members enclosed in a thermostatically controlled

chamber 'F'. The lower member is connected to the drive, and

allowed to rotate in the bearings 'B' and 'Bl' of the bottom

mounting 'M'. The vertical vee-bed is statically clamped to the

bottom mounting M' and the torsion measuring head 'P' can be

moved up and down the axis by means of a precision lead-screw

for an exact control of the gap size. The two members have

preferentially the form of a flat plate and a nearly flat cone

which ensures for all points throughout the conical gap a rate

of shear constant to within plus or minus two per cent. Various

other forms can be provided for the two members, such as a pair

of flat plates, or concentric cylinders, or cones with the same

or slightly different cone angles. For most experiments it is

convenient to use members made of light alloy, but for certain

special purposes (see below) it is necessary to use as the upper

member a glass head 'R' with a row of capillary gauges along one

diameter.
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The lower cone can be given one of four types of

motion:

(a) a unidirectional rotation at a steady rate:

(b) an oscillatory harmonic motion of predetermined

amplitude and frequency.

(c) a motion by superimposing (b) on (a)

(d) a predetermined acceleration or deceleration to

any of the above states of motion.

(a) The unidirectional rotation is provided by one

half h.p. synchronous motor through gearboxes and an electro-

magnetic clutch. The gearboxes are designed to give speed

ratios of 1:1 down to 1,000,000: 1 in sixty geometric steps.

The drive from these gearboxes is transmitted through the electro-

magnetic clutch which may be operated quickly by discharging

condensers into it, or at a slower rate by switching in preset

resistors. The gearboxes give a range of platen speeds from

.00454 revolutions per hour to 60 revolutions per minute.

(b) The oscillatory motion is provided by a second

motor and gearboxes via flexible couplings to eliminate vibra-

tion transmission and operates a variable throw mechanism to

give a frequency range from .1137 cycles per hour to 1500 cycles

per minute. The amplitude of oscillation may range from 0 to

.050 inches, that is from 0 to .03 radians on the lower cone.
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j It has been arranged that this adjustment does not alter the

phase of the motion.

(c) Both drives are combined to give type (c) motion,

as the final coupling to the journal is by worm and wheel. The

rotational motion is imparted by turning the worm whilst the

oscillatory motion results from an axial movement of the worm.

The latest model was designed for the specific purpose

of combining ease of handling with the required high degree of

accuracy over the wide range of conditions likely to be encoun-

tered in practical investigations. The model was intended to

be used mainly for mechanical actions involving a torsional

shearing movement, but supplementary equipment can be made to

experiment with other actions such as simple pulls, unidirec-

tional elongations, etc.

Measuring Devices. The measuring devices have been

designed for a complete determination in space and time of the

movements and forces in the material. The movement of the mate-

rial in the gap can be determined from that of the moving member

by a linear interpolation between this member and a static one.

This linear interpolation has been shown to be correct in a flat

gap of conical shape 'A' and a narrow width to about plus or

minus one per cent. In both rotational and oscillatory movements

the speeds or frequency can be quickly ascertained from the

A
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selected gear position, thus providing a time base for the re-

corded movement; in addition, for the oscillatory movement,

an indication of input frequency and amplitude can be obtained

from one end of the wormshaft. By using the glass head 'R'

one is able to make a direct check of the movement of the mate-

rial in all three dimensions of space by observing through a

microscope the movements of small particles of dust or small

air bubbles suspended in the material. For the determination

of the forces, electrical transducers 'D' and 'EI are used to

measure on the upper member the torque against the torsion wire

'W', and on the lower member the thrust against the spring 'S'.

The measurements are amplified by Boulton Paul Multimeter instru-

ments and displayed on the screen 'C' of the cathode ray oscillo-

graph or on the chart of a pen recorder. Typical traces are

shown in 'T' and 'N'. In order to cover a wide range of forces,

the torsion wire 'W' and the spring 'S' can be replaced by others

of different stiffness coefficients. The spring is supplied

with a sensitivity control 'GH'. In most cases the measurements

of torque and thrust suffice to calculate in the conical gap

the forces in the material at all points, and across planes of

all orientation in space.

The calculations have been verified experimentally

for a large variety of materials and conditions, but remain open

to doubt for any new material and set of conditions not previously
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tested. To remove any doubt, additional experiments must be

made. These are two types and are discussed hereunder for

liquid materials which under shear are stable for a sufficiently

long time to allow pressure measurements to be made in the slow

recording capillary gauges. The experiments of the first type

use, as the upper member, the glass measuring head 'R whose

capillaries along a diameter indicate the distribution of normal

pressures across the shearing plane of the torque as illustrated

in the diagram R'. The experiments of the second type use a

surround attached to the lower member, and a standardized New-

tonian liquid (such as water, etc.). This liquid is kept in

contact with the material under test along a cylindrical inter-

face formed in the gap at various radial distances, so that for

each distance the hydrostatic pressure in the liquid measures

the pressure of the material normal to the interface. By com-

bining all the experimental results, one is able to determine

the complete distribution of forces in the material from first

principles without any supplementary assumptions.

The instrument is suited to the testing of the mechan-

ical properties of materials of various types, including rayon,

plastics, lubricating oils, greases, natural and synthetic rub-

bers, printing inks, paints, adhesives, gelatine, soaps, cos-

metics, clays, waterglass, dairy products, dough, honey, etc.

t
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Testing Methods. The testing methods are mainly of

torsional shear. They can be varied so as to include static

conditions, steady motions at various rates of shear, and tor-

sional vibrations of various frequencies and amplitudes. All

measurements can be read off on direct reading devices so that

tests can be carried out speedily and with great ease.

For routine tests (such as occur for instance in

quality checks in production control) it suffices to carry out

only a few standardized experiments. While the usual instru-

ments measure in each such experiment only one property, the

apparent viscosity, the Rheogoniometer measures two properties,

namely, the apparent viscosity and apparent elasticity (rigid-

ity), thus obtaining twice the information usually available.

For tests in research and development it is possible

to multiply manifold the information usually available. Ap-

proach can even be made to a complete characterization of the

materials in respect of all its shear properties. A first ap-

proximation -- giving the most'significant shear properties --

can be achieved by making vibrational experiments over the whole

range of available frequencies and amplitudes. A second approxi-

mation can then be arrived at by making supplementary experiments

under static conditions and measuring the relaxation of stress

in the material. The use of vibrational experiments as the basic

method of testing is strongly recommended, not only because it
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approximates to a complete characterization, but also because

it has the following further advantages:

(i) It causes a minimum of disturbance to the colloidal

and chemical structure of the materials in its initial state,

and thus gives the nearest approach to a characterization of

that structure in terms of mechanical properties. It is even

possible to characterize in this way structures which are highly

thixotropic and unstable under steady shearing movements (such

as clay suspensions in water) because they remain stable in

torsional vibrations over a wide range of frequencies provided

the amplitude of strain is kept sufficiently small.

(ii) It allows an exact thermodynamical interpreta-

tion of the results as the work in vibration can be divided

clearly into two parts, one completely reversible and elastic,

and the other completely irreversible and viscous.

(iii) It provides a common base for the comparison

of structures of different types and consistencies (solid,

liquid and intermediate) as it is equally applicable to all

of them.

A new development incorporated in the latest model en-

ables an independent vibrational analysis to be made on a mate-

rial in a state of steady share. This is particularly useful

for the testing of strongly dilatant materials.
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The new electro-magnetic clutch coupled with a 'hard'

type of measurement enables accurate tests to be made on mate-

rials which are particularly temperature-sensitive, since the

duration of an experiment may be as little as 0.1 of a second.

This method is particularly suited to the testing of some print-

ing inks with which, even in narrow gaps, it is difficult to

dissipate the viscous heat at the required rate of shear.

2. A Two-Dimensional Straining Device

An instrument was designed and manufactured which can

impose arbitrarily predetermined elongations or contractions

along two mutually perpendicular directions. In particular one

can produce homogeneous harmonically varying elongations and

contractions with independently chosen amplitudes, frequencies

and phases in the two mutually perpendicular directions. The

instrument uses an extensible membrane, preferably a rubber

sheet, as a base on which a specimen of the material under test

is spread in the form of a thin layer. The specimen adheres to

the surface of the rubber sheet which is extended (and/or con-

tracted) in two mutually perpendicular directions by sets of

parallel &trips fastened to driving carriages which are moved

in predetermined ways.

The instrument is suited to the study of fatigue in

thin layers of materials, over very wide ranges of different

fatiguing actions. Fatigue patterns develop showing cracks along

preferential directions.
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(Lecture VII)

Principles of Mechanical Properties of Continuous Media

Part II. Thermodynamics of Energy Transformations
with a Scalar Equation of State

A. Introduction

1. Various Concepts and Definitions of the Mechanical

Properties in an Equation of State

a. True Properties as Constant Coefficients in Convergent

Power Series

When a continuous medium is subjected to a mechanical

action, one finds at every instant of time and point in the

medium, a coexistence of the kinematic and dynamic variables,

and one can conceive the mechanical properties of the medium

as the parameters which specify the relation between the two

kinds of coexisting variables. This relation is referred to

as the "Equation of Mechanical State," or "Equation of State"

for short, and is assumed to be developable into a convergent

power series. One can then define the mechanical properties

of the medium in a quantitative manner by identifying them

with the coefficients in the said power series. These coeffi-

cients are constants throughout the region of the convergence of

the power series, and thus characterize throughout this region

the true mechanical properties of the medium independently of
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the applied mechanical action, and of the values of the coexist-

ing kinematic and dynamic variables.

b. Apparent or Pseudo-Properties Dependent on Kinemat-

ical and/or Dynamical Variables

When the true mechanical properties of a medium are

conceived and defined as above, one has the advantage of char-

acterizing the medium by constants, but this advantage has to

be paid for dearly by the great complexity of the characteri-

zation, involving as it does, an infinitely large number of

such constants. For this reason it has been found more con-

venient to specify the equation of state and characterize the

mechanical properties of the medium in a simplified manner by

a small (finite) number of so-called "apparent" or "pseudo-

properties" which are not constants but functions of the applied

mechanical action, and/or of the coexisting kinematic and dy-

namic variables.

There have been two different approaches to such a

simplification, according to whether the development into a con-

vergent power series of the equation of state was reduced to a

pseudo-linear or a pseudo-quadratic form.

According to the first approach one incorporates in

the linear terms all the terms of second and higher degree in

the power series. This can be done by replacing the constant

t
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coefficients of the linear terms by power series of the varia-

bles. The resultant equation will then be pseudo-linear, and

the new coefficients of the linear terms will then be defined

as the apparent or pseudo-properties of the medium. A typical

example of this kind is the so-called "apparent" viscosity of

a non-Newtonian fluid.

According to the second approach one reduces the

power series by considering the tensor character of the kine-

matic and dynamic variables and by applying the Cayley Hamilton

equation which allows to express all powers of third and higher

degrees of a tensor by powers of lower degrees, and the three

scalar invariants of the tensor. The reduced equation will then

involve the kinematic and dynamic variables only in the powers

of degrees 0, 1, and 2, and will thus become pseudo-quadratic,

with coefficients which are functions of the three scalar in-

variants of the kinematic and dynamic variables, and which are

then defined as the apparent or pseudo-properties of the medium.

A typical example is provided by Markus Reiner's formulation of

general laws of elasticity and viscosity.

2. True and Pseudo-Properties as Operators on either Kine-

matic or Dynamic Variables

Whichever definition of the true mechanical properties

or pseudo-properties one may adopt, it will be best to conceive

them as operators, as has already been done, for the kinematic
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and dynamical variables (see previous lectures). It is then

important to note that this conception makes it clear that one

should clearly distinguish between two distinctly different,

but equally admissible definitions of the mechanical properties,

according to whether they are defined as operators acting on

the various powers of the kinematic variables and so producing

the dynamical ones (by way of the full or reduced power series),

or as operators acting on the various powers of the dynamical

variables and producing the kinematical ones (by way of the

full or reduced power series of the inverted function). There

is a discrepancy between the two definitions given above be-

cause the coefficients of the power-development of the inverted

functions are not in general, equal to the reciprocal values of

the power series of the original function. In the literature it

is often not clear which of the two definitions is meant, and

without such a clarification no physical meaning can be attached

to the mechanical properties as one would not know on what they

operate. A typical example is provided by vibrational testing

when pseudo-properties of elasticity and viscosity are derived

from the frequency-dependent complex modulus F -

rA(c05 F. + i sinF. where rand F, denote the ampli-

tude and phase of r respectively. When r is conceived as

an operator on the kinematic variable (deformation) to give the

dynamical variable (stress) one finds the modulus of elasticity
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and viscosity given by ( G cosr, ) and l/W C sinr )

respectively where c denotes the frequency, while these moduli

are given by Cj ) and l/h (r

when the inverted complex modulus is used as operator on the

dynamical variable (stress) to produce the kinematical one

(deformation).

B. Thermodynamics of Energy Transformations

1. Transformation of the Energy of External Work into the

Free and Dissipated Forms of Energy

The principles of macroscopic thermodynamics can be

used to clarify the energy transformations which occur in a

continuous medium where it is subjected to some mechanical ac-

tions. If and when these energy transformations can be ex-

pressed in terms of the kinematic and dynamic variables which

coexist in every differentiated cell of the medium, then one

can relate these variables to one another by way of the thermo-

dynamic principles, and-so establish for the medium an Equation

of State formulated in the scalars which describe the energy

transformations in a differential element of space and time.

When one applies mechanical actions to a given medium,

some external work will be expanded on every differential cell

and the energy corresponding to that work will be transformed

into other forms of energy. One then deduces from the principles

I
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of macroscopic thermodynamics that in these energy transforma-

tions, one has to distinguish two forms of energy, one called

"free energy," which is completely reversible into external

work under a suitably chosen cyclical process, and a second

called "dissipated energy," which is completely irreversible

so that none of it can be retransformed into external work in

a cyclical process.

2. Adiabatic Transformations

When the mechanical actions are applied to the medium

under adiabatic conditions, the total energy of the system re-

mains constant so that in adiabatic transformations the time

derivatives of all the forms of energy considered must add up

to zero, viz.

-* + + 0 (1)

where i, ( and G denote the work per second of the exter-

nally applied energy, and of the free and dissipated forms of

energy respectively. By definition * must be a total differ-

1 *2
ential, while G is not, and remains always positive. This

1. This insures that the work of the free energy vanishes over

a closed cyclical process.

2. This insures that no part of the dissipated energy can be

retransformed into external work.
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will be indicated formally by

d#AL and (2)
.dt

> 0 (3)

C. The Derivation of a Scalar Equation of State

1. Introduction of Simplifying Assumptions

For the derivation of a scalar equation of state, one

has to distinguish between two categories of media, referred to

as "mechanically determinate" and "mechanically undeterminate,"

according to whether or not one can express the work per second

of all three energies in terms of the kinematic and dynamic

variables which coexist in the differential cell, without intro-

ducing explicitly any new variables such as time, etc. Mechan-

ically undeterminate media will not be discussed here, while

for mechanically determined media one can derive from (1), (2)

and (3) an Equation of State which relates the coexisting kine-

matic and dynamic variables to one another, and which is formu-

lated in the scalars W, and G written as functions of

the said variables.

In order to emphasize the essential features of

such a scalar Equation of State, a number of assumptions

will here be introduced which greatly simplify the mathemat-

ical scheme, without reducing too badly the generality of

I
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its applications, viz.

Assumption 1, The medium is mechanically determinate

and exhibits the full symmetry of the Euclidean space in which

it is imbedded when subjected to mechanical tests in the initial

position. Thus, the medium in the initial position will exhibit

in such tests the symmetry of homogeneity (invariance against

all translation) and of isotropv and Parity (invariance against

all rotations and mirror inversions).

(The full symmetry of the Euclidean space is postu-

lated only for the initial position and will not be maintained,

in general, in any other position.)

Assumption 2. The medium is incompressible.

Assumption 3. All the mechanical actions are carried

out at constant temperature under homogeneous conditions of the

kinematic and dynamic variables, and in such a manner that the

resultant deformations are irrotational in the medium so that

the miin axes of the deformation will extend in all positions

along one and the same triad of mutually perpendicular directions

fixed in the medium.

1. If and when necessary the assumptions can be discarded, one

by one, and the simple scheme discussed above can be used as a

base for the development of schemes of increasingly greater gen-

erality.
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AssumDtion 4. The energy transformations in the

medium are considered for a differentially small dell for which

..one can neglect the mass forces of gravity and inertia against

the traction forces acting on the surface of the cell, since

the former forces approach to zero with the third power of the

length of the edge of the cell, while the latter approach to

zero with the second power.

2. The Coexisting Kinematic and Dynamic Variables Defined

as Coaxial Cartesian Deviatiors with Additive

Laws of Superposition

Based on these assumptions, one can introduce for the

coexisting kinematic and dynamic variables a system of Cartesian

coordinates whose axes are fixed in the medium and extend in

all positions along the three mutually perpendicular directions

which mark for all the said variables the conuon directions of

their main axes. A restriction to Cartesian systems of coor-

dinates will then be introduced and denoted by an asterisk at-

tached to the number of the equation. This restriction allows

us to disregard the distinction between true and pseudo-tensors

and dispense with the stroke at the upper or lower index level

1. It follows from Assumptions 1 and 3 that the directions of

the main axes of all the kinematic and dynamic variables must

coincide in the medium.
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which denotes for pseudo-tensors their character as volume capac-

ities and volume densities. In short all the variables will be

treated as true Cartesian tensors.

Furthermore, the kinematic and dynamical variables

can now be so chosen that they all have additive superposition

1
laws, and that they are all Cartesian deviators, i.j., Car-

2
tesian tensors with a vanishing first invariant, with uniquely

3
defined time derivatives.

1. The dynamic variables have always additive laws of superpo-

sition (see lecture on Dynamics) and for the kinematic variables

it follows from Assumption 3 that for this special case one can

introduce the logarithms of ( as variables with an additive su-

perposition law (see Part II of lecture on Kinematics).

2. The kinematic variables measured by the logarithmic scale

functions have a first invariant equal to the change in volume

and it follows from Assumption 2 that this change equals zero.

The dynamic variables for an incompressible medium are only de-

fined apart from an additive isotropic pressure and may there-

fore also conveniently be described by Cartesian tensors with

vanishing first invariant.

3. For variables which have an additive superposition law the

time derivatives are always uniquely defined (see Part II of

lecture on the Kinematics).
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The Cartesian Deviators and their time derivatives

will be denoted for the kinematic variables' by

for . - 0, 1, 2 ... p with

n= n 9 and (4)*

for the coexisting dynamic variables by
Cv)

for y = 0, 1, 2 ... y with

= P - 1/3 PII  (5)*

3. The Formulation of a Scalar Equation of State for

Mechanically Determinate Media

For mechanically determinate media one can now express
Cv) U 2

the scalars W, * and G in terms of the variables 2and , viz.,

1. It follows from Assumption 3 that in the chosen Cartesian

system of coordinates the ante and postrotational deformation

tensors are equal to one another (i.e., 9a - 0 .0 ), and

are independent of the coordinates of the point considered so

that it does not matter here whether the Lagrangian or Eulerian

definition is used.

2. According to Assumption 4, one can neglect the mass forces,

and hence express for media of all kinds the work of the external

forces (per unit time and unit volume) by the double dot product

of the Cartesian tensors of stress and deformation velocity. It

then follows Assumption 3 that the work of the free and dissipated

energy will here depend only on the coexisting kinematic and dynamic

variables and their time derivatives as given above, since all the

space derivatives are zero.
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(6)'

At

0 C4OP) (8)'

which substituted into (1) yields the Scalar Equation State

+ 'P 0(~~) (9)*

with the condition

G( ) > 0 (10)'

The Scalar Equation of State, and in fact all the

equations (6)* to (10)', may conveniently be expressed in terms
W 0)

of the three fundamental scalar invariants of 10 and 19 , or

in terms of the three main values of these variables, with

parameters which specify the two work functions $ and G , and

so define the mechanical properties of the medium considered.

One may then interpret the Scalar Equation of State by identify-

ing the completely reversible work function $ with the rever-

sible work of a general elastic potential, and the completely

irreversible work function G with the irreversible work of a

general viscous dissipation, so that the parameters which

1. The identification of the thermodynamical functions 0 and

a with the work functions of certain mechanical energies

should be regarded as a rough first approximation (see K. Weis-

senberg, Abh.d.Preuss, Ak.d.Wiss. (1931) Heft 2). It has re-

cently been possible to develop a second approximation in con-

nection with a new theory which takes into account the move-

ments of dislocations, and the forming of cracks in phenomena

of fatigue, nonhardening and dilatance.
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specify the two functions will appear as mechanical properties

described respectively by moduli of elasticity and viscosity.

On the basis of the identification indicated above, a detailed

investigation has been published in which the Scalar Equation

of State was expanded into a cycle of theories. The general

procedure of this expansion is given below.

4. An Expansion of the Scalar Equation of State into a

Cycle of Theories

For a given medium the Scalar Equation of State may

first be regarded as a differential equation with respect to

time, whose integration provides the Laws of the Aftereffects

of the coexisting kinematic and dynamic variables. One may

then derive for the medium the Laws of Elasticity, Viscosity

and Dissipation by resolving the said equation according to

-I: *1': 0

- -i: 0:.I respectively (11)

0. -0 :i1

with the law of Dissipation further resolved into the Laws of

Retardation and Relaxation, according to

.Gv) )o f., (1sO

0m .ji'withf At~ (12

and all the above-mentioned laws interrelated by Maxwell's Theory

of Elasticity and Dissipation together producing Viscosity.
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After carrying out the resolution as indicated above,

one may close the cycle of theories through the Laws of Super-

position by which three ideal media, obeying respectively the

Laws of Elasticity, Viscosity, and Dissipation given in (11)

are combined to give the original medium for which the Scalar

Equation of State has been established.

Important special cases arise for two extreme classes

of media, referred to respectively asl-media, and Y-media,

for which the scalars * and G are functions only of 0 ,
ltor only of the .
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Lecture VIII

Principles of Mechanical Properties in Continuous Media

Part II. The Strains and Stresses Defined in

a Common System of Reference for the Establishment of

a Tensorial Equation of State

A. Introduction

1. A Common System of Reference

One of the most important but still controversial

fields of Continuum Mechanics is concerned with the development

of a Tensorial Equation of State which would correlate in the

differential cell of any given medium the traction forces and

the relative movements which coexist therein. It has already

been shown in one of the previous lectures bow the mechanical

properties of the medium could be specified once such an

equation of state were given.

The present attempt for the development of a Tensor-

ial Equation of State is based on the application of the gen-

eral transformation theory (see Lecture II). In this theory

a relativity principle has been established according to which

the definition of any quantity has physical significance only

relative to some chosen system of reference. It follows that

a correlation between any two quantities can have a physical
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significance only if they are both defined relative to the

same system of reference, as otherwise correlation would

incorporate the completely extraneous relation between the

two systems of reference used, and thereby confuse the issue.

The systems of reference are here understood in the general

sense of the word, so that each such system contains not only

a system of space coordinates with a specified metric but

also all elements, instruments, laws of calibrations, etc.,

which are necessary to observe and neasure the quantities

under consideration. Now, the Tensorial Equation of State at-

tempts to correlate the coexisting traction forces and rela-

tive movements, but these two quantities have traditionally

been defined with reference to observations made in different

positions and on different geometric elements. In particular,

the definition of the traction forces referred to observations

made in the terminal position only, while the definition of the

coexisting relative movements referred to observations made in

the initial and terminal positions. Furthermore, the traction

forces were observed on geometric elements chosen as areas of

planes, while the coexisting relative movements were observed

on distances between points.
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2. Strains and Stresses to be Observed as Coexisting in

the Terminal State on the Same Area of .a Plane

In order to obtain-physically significant correla-

tion between the coexisting strains and stresses, it was neces-

sary to depart from tradition and introduce a common system of

reference with mutually adjusted definitions so that all the

observations made at a point in the medium referred for both,

coexisting quantities to one and the same position, the ter-

minal one, and to one and the same geometrical element, the

area of a plane of any orientation centered on the point con-

sidered. In the common system of reference the traction forces

and stresses will be defined as before, but the coexisting

relative movements and deformations will have to be newly de-

fined so as to be observable in the said system. The new defi-

nitions will then be related to the traditional ones by appro-

priately chosen scale functions, so that one can pass easily

from one definition to the other in either way.

3. Invariance against all Changes of Coordinate Systems

and of Scale Functions

The choice of a common system of reference is a neces-

sary but not a sufficient condition for the establishment of a

physically significant correlation between two quantities. A

second equally important condition is that the correlation

I
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should be defined in a manner which is invariant against all

changes of the system of reference, i.q., invariant against

all changes of the scale functions used in the measurement of

the two quantities, as otherwise the arbitrary choice of the

system of reference and particularly of the two scale functions

will introduce a corresponding arbitrariness in the corella-

tion between the two quantities, and thus destroy its physical

significance.

The establishment of such an invariant correlation

will be based on the coincidence of directions and/or on the

equality of amounts, as both these conceptions have the re-

quired invariance against all changes. Once the said corre-

lation has been established, it can be formulated in terms of

any arbitrarily chosen scale functions, of the traction forces

and stresses, and of the relative movements and deformations.

It will be convenient to give the correlation first in its

simplest algebraic form by means of scale functions specially

selected for this purpose, and to pass from this form to a

general one by expressing the specially chosen scale functions

in terms of arbitrary ones.

B. Redefinition of the Coexisting Strains and Stresses in the

Common System of Reference

1. Formulation of the Definitions

At any point in the medium a differentially small

cell will be considered, and in it the coexisting kinematic
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r and dynamic variables will be defined in a common system of

reference. This system is so chosen that one can observe

both coexisting quantities in one and the same position, the

1terminal one, and on one and the same geometric element, the

area of a plane of any orientation passing through the point

considered.

To make such observations possible one imprints in

the medium in its initial position certain marks which will

be recognized at all instants of time, and in particular at

the arbitrarily chosen instant in which the medium happens

to be in the terminal position.

The marks in the chosen differential cell will be

put on a pair of neighboring small test areas of equal size,

d9 and di', say, which are parallel to one another, centered

on the points 8 and 81 respectively, and so oriented and

located as to be perpendicular to the vector d°  that joins

the two centerpoints. -

In the terminal position one will recognize the

marked test areas and their centerpoints, which will now serve

as the common system of reference and which will be denoted by

1. The terminal position of the medium is considered because

this is the general one which may be identified with any posi-

tion of the medium at any arbitrarily chosen instant of time,

including the initial position occupied at the instant t -

as a special limiting case.
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dB and dW', and by 0 and 0' respectively with the vector

do joining 0 to 0' . The relative movements, now referred

to as tractional movements, will then be observed as the dis-

placement of the area dB' relative to the test area dB, and

the tractional forces as the forces dF exerted by the area

dB' on test area dB. For the fractional movements one then

defines the tensor of tractional deformation, or strain, as

the operator which acts on the test area dB and transforms it

into the vector ds, and for the tractional forces one defines

the stress as the operator which acts on the same test area

dB and transforms it into the force vector dF.

The algebraic calculations may be given in terms of

tensors and pseudotensors,. the latter being distinguished by

a stroke at index level, indicating volume densities of ten-

sore by a stroke at the upper level, and volume capacities by

a stroke at the lower level. The test area will be given

vector capacity dA_ viz.,

dl -dA k (1)

where the pseudovector dAk_ is perpendicular to the test

area and has a length equal to the size of that area. Any

operator acting on that test area and transforming it into a

contravariant vector dom or dF m will then appear as a mixed

tensor of third order, or a double contravariant tensor density

of second order.
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For greater convenience of calculation and without

impairing the generality of the procedure, one normalizes

the distance apart of the pair of neighboring areas with

respect to the size of these areas by a normalization condi-

tion which postulates for the initial position

doom - di ?::m - km- (2)

where the indices ij, k refer to cyclical permutations of

the indices 1, 2, 3 of the coordinate axes of a righthanded

system, and where 2 .:m and 2km- denote the unit volume ten-

sor of third order, and its contraction into a tensor density

of second order in the coordinate system used in the initial

position of the medium. The normalization condition (2)

means that in the initial position of the medium there is a

coincidence in length and orientation of the contravariant

vector dS and the covariant pseudovector dk, the former

representing the spacing bar vector between the areas d9 and

dg', and the latter representing the orientation and size of

these areas.

With the above normalization condition one then de-

fines in the terminal the strains and stresses as the operators

acting on the test area according to the equations

doMMdB ii T.m ndA. S k- and (3)
j kin- ()

dFm .. dAk P(
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In view of the contraction of dB j into dAk_ of

equation (1), one obtains for the strains and stresses

k -- Tji. and (5)

pkm- Q. .. m -(m-ij. " ji. 6

It will be noted that for the stress the definition here is

identical with the traditional one (see lecture on Dynamics)

but for the strain it is not. In the new definition the strain

is conceived in the terminal position through the discrepancy

there between the spacing bar vector ds m and the representative

pseudovector dAk- of the test area. This discrepancy arose

between the initial and terminal positions through the move-

ment of the neighboring area relative to the test area, as

there had been a coincidence of d m and d~k_ in the initial

position according to the normalization condition (2). (In a

rigid movement of the differential cell as a whole there would

be no change in the spacing bar vector (dom - dsm ), and no

change in the representative pseudovector of the test area

(dk_ - dAk_), so that in this case there would be no discrep-

ancy in the terminal position between dsm and dAk_.)

2. The Relations of the New Definitions to the Traditional Ones

For a quantitative relation between the new and the

traditional definition of strains, one has to compare the equa-

tions (2) and (3) of this lecture with the equations given in
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Part II of the kinematics. One then finds for the main values,

Si say, of the tensor density S

S Mo for i - 1,2,3 (7)

and for the directions of the main axes of S that the direc-

tions coincide with the direction of the post-rotational defor-

mation tensor - p, which may be indicated by equating the ap-

propriate unit vectors, C(i) say, viz.,

r(i) (S ) = (i)(-p) for i = 1,2,3 (8)

There is no need to establish for the stresses the

corresponding relations as here the new and the traditional

definitions coincide.

C. Goniometry of the Newly Defined Strains and Stresses

According to the new definitions one measures the

coexisting strains and stresses by the tensor densities S

mk- ..m .mand P (or by the tensors T.. and Qij ), and one can

best appreciate how well these measures are adjusted to one

another by considering their goniometry. While in the tradi-

tional definitions there was a difference between the laws

which govern the goniometry of the two coexisting quantities,

this difference has now disappeared, and one finds for the new

definitions that the two quantities obey the same goniometric

laws. One finds in particular that they both have at every

point in the medium round the full solid angle of directions



8-10

(a) the same transformation properties since they

are both measured by tensor densities (or tensors) of the

same order and the same symmetry

(b) the same laws of equilibrium for the two sides

of a sectional test area of any orientation, and for the four

test areas of the faces of a tetrahedron of any shape and any

orientation since for a sectional test area one has

0 - dom + (-dm) - skm- [dAk_ + (-dAk-)] and (9)

0 - d? + (dFm) - Pkm- [dAk + (dA)] (10)

and for the four faces of a tetrahedron

0 -do m + dsim +dam +d m
(x) (y) (z)

skm - + +(x)K- + dA Wk- + d j(z)K- and (lL

m m m

0 dr + x) + dCy) + dz)

Pkm- [CdA + dA(x)k- + dA (y)k- + dA (z)k-] (12)

because for the four faces of any tetrahedron one finds

0 = dAk_ + dA (x)k" + dA(y)k- + dA(z)k- (13)

where three faces of the tetrahedron are denoted by bracketed

indices x, y and z, and the fourth face without bracketed index.

(c) the same laws of expressing the resolution into

components parallel and perpendicular to the common test area

of any orientation. One can resolve the tractional movements,

as well as the coexisting tractional forces relative to the
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plane of the common test area of any orientation into three

mutually perpendicular components. One component will be

normal to the plane of the area, a second will be tangential

to it, and a third will extend along a direction perpendicular

to the other two. The tangential direction will be chosen

for the strains along the projection of the tractional move-

ment of the parallel neighboring area relative to the test

area, and for stress along the projection of the tractional

force on the test area.

For the algebraic calculations the three components

will be referred to as the "normal," "tangential" and "cross"

components and denoted by a bracketed index N, Tg, and C re-

spectively. For the convenience of working with quantities

of finite size only, one divides the equations (3) and (4)

by the infinitely small size dA say, of the test area

dA d kdk-) 1/2 (14)

This division will not -affect the tensor densities Skm - and

Pkm- (since both sides of the equations (3) and (4) will be d

divided by the same factor), but it will reduce all the infini-

tesimally small quantities dAk_, do M and dFm to unit area. One

then finds for the resolution

dA~ km- dm ds in do M si
k-  - - ( + + d..J+L and (15)
dA dAA dA dA

k- P c~- MF" ine+ Ma (16)
dA dA dA dA dA
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which gives for the normal components

dI) Mdu- k-eS and (17)

idl Idl Id T - (18)

LiN) ~ U dkm (18)

and for the tangential components

ds m A km- dAu_ Ak_ skU- dAm-
I = kA - 1 d (19)

IdAl IdAl IdA I IdA

=F dA~ km - CIA _dAk - ku~ de- 20)T k- __ u _ u da- (20)
IdAl dAl IdAl IdAl

and finally for the components

do md(C) = 0 (21)

Id 1

IdAl

The algebraic calculations given above can be re-

placed by a graphical construction which has been known as the

Mohr circle diagram for the resolution of the tractional forces.

In this diagram the main values P(i) (for i - 1,2,3) of the

stress, as measured by km- are extended along the x axis,

and half circles drawn over the distances between them. The

normal and tangential components are then read off as the x

and y coordinates of a point representing the orientation of

the test area. As the formulae for the resolution of the
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kin-
tractional forces in terms of P are now analogous to those

of the resolution of the tractional movements in terms of the

km-
S one can use a Mohr circle diagram also for the latter by

drawing half circles over the main values Si) -

(for i - 1,2,3) and then proceeding as above.

D. The Choice of Scale Functions for the Measurement of the

Strains and Stresses

The choice of any particular scale function for the

measurement of the strains and stresses is arbitrary, and

should be adjusted so as to offer the best advantages for the

particular problem under consideration. It has not been

found possible to find scale functions which are advantageous

to all the problems one has to deal with in Continuum Mechan-

ics. Hence, for different problems different choices will be

made, and one has to make the appropriate changes in the scale

functions as one proceeds from one problem to another. This

can be done for the strains with the help of equations (7) and

(8), while for the stresses there is no need to do this as the

same measure is used in the various applications.

At present we are concerned with the problem of

finding an Equation of State which will relate the coexisting

(tractional) strains and stresses to one another, and for this

purpose one has to use the equations (1) to (22). It will be

advantageous for this purpose to have the scale functions of
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the two Coexisting quantities so adjusted to one another that

they obey at every point of the medium the same goniometric

laws round the full solid angle, and that they involve only

the powers up to the first degree and are in this sense quasi-

linear or, more exactly "tensor-linear.'" It will be noted

that the scale functions Sk m- and Pkm- have the advantage of

being so adjusted, and only involved to powers up to the first

degree so that all the equations (1) to (22) are tensorial-

linear.

Without losing any of the above-mentioned advantages,

one can now introduce for the coexisting strains and stresses

new scale functions which are related to Sk m - and Pkm- by a

tensorial-linear relation, viz.,

for the strain

- H(S-) - KSk m- + LIkm -  and (23)

for the stress

G- - G(P- - MP + NPk m-  (24)

where I k m- denotes the volume density of the unit tensor, and

K, L and M, N denote mutually adjusted scalar quantities which

may be constants, or any functions of scalar variables and/or

kcm- kcm-of the scalar invariants of 8s and P

There will be no need to change the scale function

Pkm- for the stresses, but sometimes it will be useful to do

so for the strains and use here a scale function which has zero
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value for no strain. Such a scale function can be constructed

as

km- . ski- 0km-. km- _ - (25
H - -1 (25)

0km-
as in the initial position the value S is always equal to

kcm-
I according to (7). The use of this scale function of the

strains does not require an adaptation of the scale function

kcm- 0km-
P for the stress since in the initial position P is zero,

and hence

Ukm- km- _km- km- (26)
G P -p -p(6

When one proceeds from the privileged group of scale

functions to any arbitrarily chosen ones,

C - C(S-) (27)

D- = D(P-) (28)

in terms of convergent power series, involving powers of degrees

higher than one in the Sk m - and Pkm- and thereby making the

equations (1) to (22) nonlinear. Such a procedure would there-

fore not be advantageous here but may have to be adopted when

one deals with other problems which may require the use of

scale functions other than those of the privileged group. In

these cases one may reduce the power series and obtain a quasi-

quadratic or, more exactly, a tensorial quadratic expression

by replacing all powers of third and higher degrees by powers

of second and lower degrees in accordance with the Cayley

L
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Hamilton equation. An example of this will be discussed in

the next section.

E. A Model Technique for the States of Strains and Stresses

1. Invariance against all Changes of Scale Functions

The traditional model technique in Continuum Mechan-

ics is based on the use of dimensionless quantities, i.e., of

quantities which are invariant against changes of the units

of mass, time, and length, and two systems are regarded as

similar (one serving as a model for the other) if their char-

acterizations in terms of all the dimensionless quantities

coincide. This procedure works satisfactorily when one wants

to compare states which are different in their dimensions of

mass, time and space, but becomes ineffective when one wants

to compare states which are different in some dimensionless

quantities, such as the strains. In these cases one can not

apply the model technique as the similitude defined above

requires an identity of the dimensionless quantities. It

1. The Cayley Hamilton equation applies to any tensor of sec-

ond order, X say, and relates the successive powers of X as

X -XX xzx -+XV I so

where Xt, X, and Xtdenote the three scalar invariants of X.
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will be seen that the concept of similitude can be generalized

so as to apply also to states with different amounts of dimen-

sionless quantities, and, in particular, to states with dif-

ferent amounts of strains.

One may be tempted to generalize the concept of simil-

itude by that of algebraic proportionality of the dimensionless

quantities but such a generalization has a physical significance

only with regard to the particular scale function with which

the dimensionless quantity happens to be measured, and two

states which appear similar with respect to one scale function

would be dissimilar with respect to another ( .g., two states

of strains which appear similar when measured in percent of

elongation would appear dissimilar when measured in logarithms

of the elongation).

In order to apply a model technique to states with

dimensionless quantities of different amounts, it is necessary

to generalize the definition of similitude in such a way that

it is invariant against all changes of the scale functions,

and thus capable of a physically significant interpretation.

Such a generalized invariant definition can be formulated by

way of an identity of certain angles which are associated with

the quantities considered. Once the invariant definition of

the generalized similitude is given, one can apply it equally

to all quantities, with or without dimension, and one can
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formulate it in terms of any arbitrarily given scale functions

of the said quantities. Moreover, one can then also find a

privileged group of scale functions in which the generalized

similitude appears in the form of an algebraic proportionality.

2. The Anisotropic Similitude

The quantities with which we are here concerned in

the development of a model technique are the coexisting strains

and stresses, of which the former is dimensionless while the

latter has the dimensions of [m' t-2 l-], and the associated

angles can be obtained by considering for a test area of any

orientation the three mutually perpendicular directions of the

normal, tangential and cross components. It is easily seen

that all the angles involved in this consideration are invari-

ant against all changes in the scale functions with which the

coexistent strains and stresses are measured. A generalized

concept of similitude can now be defined in an invariant manner

for two states of strains, and separately for two states of

stress, and again separately for a state of strain and a state

of stress, by postulating identity of the angular distributions

of the various components with respect to every test area of

a given orientation. The generalized similitude will be re-

ferred to as anixotrovic similitude since the said angular

distributions are unaffected by strains and stresses of iso-

tropic symmetry, and detrmined completely by the anisotropy

of these quatities.
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One can formulate the anisotropic similitude in al-

gebraic form first in terms of the particular scale functions

kcm- kcm-
S and P by reference to equations (19) to (22), and

then in terms of any arbitrarily chosen scale functions Ckm

kcm-
and D by inverting equations (27) and (28), and expressing

Sk m - and Pkm- in terms of C
km - and Dkm-

Using the particular scale functions S
km - and Pkm-

one finds then from (19) to (22) in an invariant notation

that anisotropic similitude exists

for two states of strain S- and S'- say, if

XS- + YS'- + ZI- = 0 (29)

for states of stress P and P'-, say, if

KP- +.LP'- + MI- = 0 (30)

and for a state of strain S- and a state of tractional

stress P- if

UP- + VS- + WI- = 0 (31)

where I- is the volume density of the unit tensor, and the co-

efficients X, Y, Z, K, L, M, and U, V, W denote scalars which

need not be constants but may be scalar functions of any scalar

variables including time, temperature, and the scalar invari-

ants of the strains, the stresses and their derivatives in space

and time. The equations (25) to (31) can be written in various

other forms which are all equivalent to one another, and which

are most convenient for various purposes. One such form is
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obtained by eliminating the scalar coefficients, and this

brings out clearly the character of the anisotropic simili-

tude in terms of the particular scale function as an alge-

braic proportionality of certain differences. The elimina-

tion of the scalar coefficients can be carried out by sub-

tracting from the equations (29) to (31) other equations de-

rived from them by successive rotations which produce cyclical

permutations of the coordinate axes. These rotations leave

the scalar coefficients unchanged (because of their isotropic

symmetry) while the components of the strains and stresses

suffer cyclical permutations of their indices. By considering

then the ratios of the differences of the components one obtains

equations which are free from the scalar coefficients. The

results can conveniently be written in a restriction to Car-

tesian systems of coordinates, where the restriction is indi-

cated by an asterinK to the number of the equation, and where

one can disregard the distinction between the true tensors and

tensor densities and hence disperse with the distinctive stroke

at index level of the said densities. One then finds from (22)

(23) and (24)

(S au-, b v ) W bv-scw)-:(SWs a u ) . (Sau-s bv) :(S' bv-S cW :(S cw-S'au) (32)*

(,au_ bv): (by _v-b ): ,cw_0au ) - (,au-'(,bv bv-'cw):( w_ (33)'

-u by bvcw cw au au- bv bv- cw cw au
-):(P _P):(P -P )- (S -S W:S -8)( S(34)'
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or in terms of the main values

(S -S W:S -S ):(S -S ), i (( )- (2)) (2( )-s(3)) ( 3~)- (1))

(S(S -S' ) (35)*(s' ( )-s'~ (2)) s (2)-s (3)) s - '() 3 )

(P () -P(2) ) :(P (2)- P(3) ) :(P (3)- P(1))

(P, -P, ):(P' -P, ):(P' )-P1 ) (36)*

(P ()-P(2) ):(P ()-P (3)):(P(3-P() ) =

(S (1) -s (2 ) ): (2)-s(3) ): (s)-s(1)) (37)*

It is seen from equations (35)* to (37)* that the

above invariantly defined anisotropic similitude shows up in

the Mohr circle diagrams of the strains and stresses as an

ordinary geometric similitude of the said diagrams provided

only that the diagrams are constructed for the main values of

the particular scale functions Sk m - and P km-, or for the main

values of any scale functions of the privilege group defined

in equations (23) and (24).

It is also seen from the equations (29) to (37)*

that the group of scale functions which was privileged with

respect to the equations (1) to (22) is also privileged with

respect to equations (29) to (37)*, as all these equations ap-

pear in tensor-linear forms when expressed in scale functions

of the privileged group. However, when one introduces ac-

cording to (27) and (28), arbitrarily defined scale functions
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c- and D-which do not belong to the privileged group, then

all the equations (1) to (22) and (29) to (37)* become tensor-

kin- kmn-
quadratic, as one has to substitute for S and P

The quadratic expressions

kin- .C 01km
- +Ckm + c2ckl-Clr- gr and (38)

km- km km- kl- rm-
0d 0 1 (39)

are derived from the inversion of (27) and (28), where the

various coefficients c and d are scalars, and scalar functions

of any scalar variables, including the scalar invariants of

km- ki- rm-C and D , while g denotes the volume density of the

fundamental metric tensor g used in the system of coordinates.

One finds in particular for the anisotropic simili-

tude of two states from (29) (30) and (31) three tensor-quad-

ratic equations, which are all analogous to one another so

that it will suffice to give here one of them, namely, the

one referring to anisotropic similitude of a state of strain

with a state of stress. This equation may be written in terms

of invariant notation as

U (d0 I-+d1 D-+d 2D-D-g-) + V (c0 1-+cC-+c 2C-Cg-) + WI - 0 (40)

where U, V and W are scalars, and arbitrary functions of any

scalar variables, including the scalar invariants of C- and D-,

etc., while the various coefficients c and d are scalars de-

fined by (38) and (39).
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Seminar on Continuum Mechanics
~Lecture IX

Principles of Mechanical Properties of Continuous Media

Part IV. The Tensorial Equation of State Derived by Way of
an Analytical Procedure

A. Introduction

1. Different Approaches to a Tensorial Equation of State

When one tries to derive for a given continuous medium

a tensorial equation of state by correlating in a differential

cell the coexisting strains and stresses (defined there in a

con mon system of reference), one has to expect that this equa-

tion will differ from medium to medium, and even for the same

medium with the time and with the particular mechanical actions

applied. It is in these differences that the various phenomena

of flow and the various associated mechanical properties of

continuous media will show up in all their complexities, re-

sulting from all possible linear and nonlinear correlations

between the coexisting strains and stresses, their derivatives

in time and space, and other variables which may enter the

equation explicitly, such as time, temperature, boundary con-

ditions, etc.

In order to establish here a principle that would

apply to all the various media and conditions, one has to find

some feature which is comon to all of them, and which has
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physical significance in the sense that it in invariant against

all coordinate transformations and against all changes of the

scale functions. If such a feature can be found, then the re-

quired principle can be derived from it, and formulated as a

tensorial equation of state of physical significance. This

equation will express the feature in which all the media behave

alike, and will at the same time incorporate sufficient unspeci-

fied parameters to allow the taking into account of all the

differences and complexities which have to be expected in the

mechanical behavior of media, as mentioned above.

In order to avoid, as far as possible, a reduction

in the generality, we shall retain here only the assumption 1

of those made in the discussion of the thermodynamics of the

energy transformations with a scalar equation of state (see

lecture VIII), and discard all the other assumptions. The

assumption 1 is retained here because it reduces the generality

only slightly while it greatly simplifies the considerations

1and brings out more clearly the essential points. For ease

of reference the assumption will here be stated again, viz.,

Assumption IX.l. The media here considered will be

restricted to those which in mechanical tests exhibit .n the

initial position but not necessarily in any other position the

1. It has been possible to discard this assumption as. well and

to establish a principle which applied to all media, whatever

their symmetry may be.
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full symmetry of the Euclidean space in which they are imbedded,

S.j., the symmetry of homogeneity, isotropy and parity.

The establishment of a commuon feature in the mechan-

ical behavior, and of a corresponding principle and tonsorial

equation of state can be achieved in a variety of ways lead-

ing to different formulations which, however, are all mutually

consistent and interrelated. Only two of these ways will be

selected here for discussion. The first one, based on an

analytical procedure, will be reviewed in the present lecture,

while the second one, based on a synthetic procedure, will be

discussed in the following lecture.

B. Analysis of the Correlation between Coexisting Strains and

Stresses

1. Analysis in Time and Space

At the start one may consider a medium of any kind

which occupies its initial position at an instant t - , and

is moved thereafter under given conditions to a terminal posi-

tion occupied at an instant t - t, say. In the said terminal

position attention will be concentrated on a point 0 of the

medium which is marked at the center of small test areas of

all orientations. On each of these test areas one can observe

the coexisting tractional forces and tractional movements (see

preceding lecture), but the latter are observable there only

in the form of the total tractional displacement from the
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initial to the terminal position without any indication of the

path by which the medium travelled between the two positions.

In the special case of an ideally elastic medium, one can dis-

regard the path taken, but for the deduction of a general

principle applicable to a medium of any kind, it will be nec-

essary to take this path into consideration and to regard the

tractional forces on every test area dependent on the whole

prehistory of the tractional movements there. Resolving then

for every test area the tractional forces into the three mutu-

ally perpendicular components normal, tangential and crosswise

to the test area, one has to correlate there the directions and

amounts of each of these components with the prehistory of the

directions and amounts of all the three components of the trac-

tional movements and assess the relative magnitudes of the

terms entering in the correlation.

It will be assumed that this assessment can be made

in successive degrees of approximation, and that the resultant

correlation can be resolved into two mutually independent parts,

one dealing only with the directions, and the other only with

the amounts of the components. It will be further assumed that

the said resolution and assessments are applicable to all media

and conditions and so establish for them a common feature of

mechanical behavior.

For the part dealing with the correlation of the di-

rections only, one can make an assessment by postulating that
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the direction of any one component of the traction force de-

pends strongly on the prehistory of the direction of the cor-

responding component of the tractional movement while only

weakly, or not at all, on the prehistory of the directions

and amounts of the two other components, so that these can

be neglected in a first approximation, and accounted for only

in a second and.higher degree of approximation. The said as-

sessment may conveniently be introduced in the form of an

assumption, viz.,

Assumption IX.2. In any terminal position of the

medium, one may consider at every point a given test area and

expect to find there the normal, tangential and cross compo-

nents of the traction force in or near the ranges covered

there by the corresponding components of the tractional move-

ments during the whole prehistory from the initial to the

terminal position.

In a first approximation this means that a vector

marking the direction of the tangential component of the trac-

tion force for a given test area must be linearly dependent

on the set of vectors drawn in the various directions which

the tangential components of the tractional movements occupy

in the said test area in the course of the prehistory from the

initial to the terminal position. Considering then that in

the given test area the cross directions are already deter-

mined by the tangential ones, and that the normal directionsI
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are the .same for the tractional forces and the tractional move-

ments, one finds that a Vector drawn in the direction of the

total tractional force must be linearly dependent on the set

of vectors drawn in the various directions which the normals

to the test area occupy in the medium in the course of the

prehistory from the initial to the terminal position. In the

second and higher degrees of approximations one has then to

modify the linear dependency by appropriate correction terms.

Passing from the part of correlation dealing with

the directions of the components of the tractional forces

and tractional movements to the complementary part dealing

with the amounts of the said components, one finds for an

assessment a difficulty which has to be overcome. It arises

1. The assumption has been formulated above in exactly the

same way for the directions of all three components in order

to show its self-consistency in the sense that the same rule

applies to each of the said directions. It would have suf-

ficed, however, to consider only for the directions of the

tangential components since for the directions of the normal

components the assumption is always true, but trivial, since

in every position the normal direction of the tractional forces

must coincide with the normal direction of the tractional move-

ments, and for the directions of the cross components the as-

sumption does not contain anything new since these directions

are already defined by the other two covonents.
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out of the fact that some media (the incompressible ones)

have at each point of the medium tractional forces which are

only determined by the tractional movements there, apart from

an additional isotropic pressure which remains here unspeci-

fied. For this reason an assessment will be made at the point

not for one test area of given orientation, but for a compari-

son of the amounts observed on two test areas of different

orientations. In such a comparison the traction forces and

all their components will be reduced to unit area, since then

the observations made on the two different test areas will be

comparable, and the unspecified isotropic pressure cancels

out at each point (but not in a comparison between two differ-

ent points). The assessment can then be made in accordance

with the following assumption.

Assumption IX.3. For a given point in the medium,

one may observe the traction forces in the terminal position

on two test areas of different orientations, and one will then

find in a first approximation that these forces have per unit

area the same normal (or tangential,cross) components if the two

test areas had per unit area the same prehistory (from the

initial to the terminal position) in respect of e amounts

and directions of the normal (or tangential, croi components

of the tractional movements there. In second and higher de-

grees of approximation, deviations may occur as one may have
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to take into account the prehistories of the two test areas

(after reduction to unit size) in respect to all three compo-

nents of the tractional movement where one assesses for the

tractional forces the equality of any one of its components.

However, such deviations are expected to be of small per cent
1

values.

1. The self-consistency of the assumption has been again put

in evidence by a formulation which applies equally to all three

components. However, it may be noted that the assumption is true

but trivial for the cross components of the tractional forces

since they are by definition equal to one another (and zero) on

test areas of all orientations, and hence certainly equal on

test areas which had the same prehistory in respect to the direc-

tions and amounts of the cross components of the tractional move-

ments there. For the tangential components of the tractional

forces, the restrictions for an equality of their amounts are

very severe as they require for the two test areas the same pre-

history both in directions and in amounts of the tractional move-

ments there. This means that in the general case of an arbi-

trary prehistory there is hardly any possibility of using the

assumption for the said tangential components, unless and until

the special cases are considered in which the prehistory can be

disregarded, as, V.g5., for media and conditions for which the pre-

history is replaced by an "elastically recoverable" tractional

movement (see later chapter of this lecture). Finally, for the

normal components of the tractional movement, the assumption is

always of importance sire here the two test areas will have auto-

matically the same prehistory in direction as the normal direc-

tion of a test area is uniquely defined (while the tangential

direction is not).
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The assumptions IX.2. and IX.3. express connon fea-

tures in mechanical behavior with the required invariance

against coordinate transformations as well as against changes

in the scale functions, and it can also be shown that they are

consistent with one another. Hence altogether, they are

suited to derive from them a principle which establishes the

common features in mechanical behavior, and thus can be used

as a basis for a tensorial equation of state of general appli-

cability. In such a derivation one can evaluate the validity

of the assumptions with various degrees of approximations,

and in each such approximation one can obtain different but

mutually consistent formulations of the principle and the

associated tensorial equations of state.

The evaluation of the validity of the assumptions

in approximations of second and higher degree would require

more time than is available here, and the discussion in this

lecture will therefore be limited to an approximation of first

degree only, in which the assumptions are simplified by delib-

erately neglecting in them the terms of higher degree against

1. A proof for the consistency has been published by P.U.A.

Grossman in Koll. Za. 174, 97 (1961). The proof there was

restricted to ideally elastic media but has meanwhile been

generalized so as to apply to media and conditions of all kinds.

A
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those of first degree. The same will be done for the various

formulations of the principle and the tensorial equation of

state, and for ease of reference and discussion the formula-

tions will be given as if they were exact, it being tacitly

understood that the phrase "in a first approximation" should

be added to each equation.

2. Various Formulations of the Principle

When assumptions IX.2. and IX.3. are formulated in

approximations of first degree, they can be put into algebraic

forms which are invariant against all coordinate transforma-

tions and changes of scale functions by using Gram's determi-

nant for expressing linear dependence and equations (17) to

(22) of lecture VIII for expressing the various components of

the tractional movements and tractional forces.

In particular one deduces from assumption IX.2.

with reference to one test plane, viz.,

Principle (Formulatibn 1): During the prehistory

from the initial to the terminal position one may mark in the

medium vectors normal to a given test area at various instants
k

t to t ...t, at which the medium occupies the positions

(o), (a) ... (k) ... (1). One then finds in the terminal posi-

tion imprinted in the medium a set of vectors which will out-

line in the medium a space of one or two or three dimensions,
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and this space, whatever its dimensions may be, will always

contain the vector which indicates the direction of the trac-

tion force in the terminal position.

The principle can be formulated as a tensorial equa-

tion of state with the help of the Gram determinant,1 G say.

This determinant formed from any given set of vectors has a

rank RG which is equal to the number of vectors that are line-

arly independent from one another, and therefore always equal

to the number of dimensions of the space outlined by the set

of vectors considered. The derivation of the tensorial equa-

tion of state is based on the following considerations.

A vector which has been marked in the medium at the

instant t - perpendicular to the given test area in the in-

0
itial position will be there, along ds, and will occupy in the

medium in the terminal position a direction along ds which will,

in general, be inclined to the test area (see lecture VIII,

equations (2) and (3)). Similarly, one will find in the me-
a

dium in the terminal position inclined vectors along ds(t)...

do(t), say, resulting from vectors which at the instants t -

t.. t t, etc., had been drawn perpendicular to the test area

1. Gram's determinant for a set of vectors a,b,c, say is given by

a.a a.b a.c

G (a,b,c) - 1 b.a b.b b.c

c.a c.b c.c
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in the intermediate positions (a) ... (k), etc. Finally, there

will be in the medium in the terminal position a vector which

had been drawn in that position and thus is perpendicular to

the test area along dA. It will be convenient to denote by

s(t) for t - , t, ... , etc., the unit vectors along the in-

clined directions and by n the vector which is perpendicular.

One then finds for the tensorial equation of state

3 for G s(t),n p 0
RG [F, .(t), n] - RG [s(t), n] a (1)0o s(t),n - 0

where F indicates the vector of the tractional force per unit

site of the test axes.

The principle and equation (1) are certainly true,

but trivial, for RG - 3 as this only means that the direction

of F lies somewhere in three-dimensional space. This leaves

for discussion the two degenerate cases, and here the validity

of the principle and of equation (1) can be proved for R. - 1,

since in this case the tractional movements have occurred in

a direction normal to the test area, i.e., along a main axis

of the strain, and it follows from the isotropic symetry of

the medium in the initial position that the tractional forces

too must then extend normal to the test area, L.gL., alqng a

main axis of stress. Finally the degenerate case of 3O - 2

contains the essence of the principle and equation (1), and

this case cannot be proved theoretically (except by reference
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to the assumption IX.2). It follows from (1) that for

RG - 2, the tractional force must lie in the plane (space of

two dimensions) which contains the normal to the test area

and the direction a which indicates the tractional movement

of the parallel neighboring area relative to the test area.

Proceeding then from the consideration of one test

area to the consideration of two test areas of different orien-

tation, one deduces from assumption IX.3. for the normal com-

ponents1

Principle (Formulation 2): At any point in the me-

dium one finds in the terminal position for two test areas of

different orientations that the amounts per unit area of the

normal components of the tractional forces will be equal if

the two test areas had per unit area the same prehistory (from

the initial to the terminal position) of the amounts of the

normal components of tractional movements. Denoting by n-

and m the vector capacities which represent the two differ-

ently oriented test areas of unit size in the terminal posi-

tion, one finds from (17) and (18) of lecture VIII a ten-

sorial equation of state, viz.,

1. The formulation for the other components will be postponed

until the special cases are considered for which the prehistory

of the tractional movements can be replaced by elastically re-

coverable tractional movements (see footnote to assumption IX.3).



9-14

(nP.P'n_),_u.P- -ro) K n (t).S" n (t) y-t)_.s'.m (t)}J) (2)

with P- - dol 4+ d D+ 4 2 D-D_ (3)
2.2

S- - CoI- + c C" + c C-C (4)
0 2. 2

where C- and D- denote arbitrary scale functions of the stresses

and strains, K denotes an unspecified factor which may depend

on all the parameters that characterize the conditions of the

experiment under consideration, and n(t) and m(t) denote the

quantities n_ and m as functions of time.

The above formulation of the principle has the re-

quired invariance and has the advantage of allowing exceedingly

rigorous experimental tests, in which systematic variations

are made of the kind of material, and of all the conditions

of the experiments, since the principle claims to apply to all

kinds and conditions.

Particularly suited for such tests are movements of

simple (two-dimensional) laminar shear, since for these move-

ments the second formulation of the principle claims for each

instant of time and each point in the medium that the normal

pressures per unit area should then and there be equal on all

test areas which are parallel to the direction of shear, since

all these areas have suffered per unit area the same prehistory

in respect to their normal displacements from their respective

parallel neighbors, all these normal displacements being zero

throughout the whole movement of the medium from the initial

to the terminal position considered.
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Denoting then in a Cartesian system of coordinates

by indices 1, 2 and 3, respectively, the direction parallel

to the lines of flow, the direction normal to the shearing

plane, and the direction perpendicular to the other two, one

therefore has here

22 P3 3  (5)*

irrespective of the boundary conditions, the mechanical prop-

erties of medium, the correlation between the stresses and

strains, and their derivatives in time and space, irrespective

too of whether or not there is a coincidence or an angular

deviation between the main axes of the stresses and strains,

and/or of their derivatives, and finally irrespective of changes

in temperature, etc.

3. Prehistory and Elastic Recovery

There are many phenomena which illustrate the influ-

ence of the prehistory on the mechanical behavior of materials.

When we speak hereafter of an elimination of the prehistory,

it does not mean that these phenomena are to be neglected.

What it does mean is that in the formulation of the principle,

we attempt to make no explicit reference to the prehistory

(which is sometimes unknown) and refer instead to results of

experiments which can be performed in the terminal position

without any knowledge of how this position has been reached.
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A clear case is provided by ideally elastic media,

j.e., by media which possess a stxain potential. According

to the theory of elasticity such media have a stress-strain

relation which can be specified in the terminal position with-

out any knowledge of how that position was reached. The stress

in the terminal position can be measured directly by way of

the applied forces, and the corresponding strain can be found

by releasing the forces, and observing the elastic recovery of

the medium in its return to an unstressed state. The strain

is then measured as between the position occupied in that

state and the terminal position. There is no need to know

here the exact path of the movement, or the velocities, accel-

lerations, etc., involved since the existence of a strain po-

tential indicates that the stress-strain relation depends only

on the total strain between the positions of the stressed and

unstressed states irrespective of all other conditions.

For media of a general kind which have some sort of

elasticity but are not ideally elastic, the position is more

complicated, and not quite clarified yet. There are many phe-

nomena of various kinds which are connected with the elastic

energy stored in such media. Two such phenomena are connected

with the dissipation of the stored energy under conditions of

zero external work (j.g., at P- ... i_ - 0) according as one

observes the "relaxation" of stress P" for 3m 0, or the "re-

tardation" of strain for Pa 0. One can use either of these
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phenomena for an assessment of the elastic parts of the stresses

and strains. Moreover, one can superimpose in the terminal po-

sition vibrations of stresses and strains, and resolve the re-

sultant complex modulus into moduli of viscosity and elasticity.

The best procedure has not yet been settled, but provisionally,

the following suggestion has been made.

The whole stress should be regarded as elastic, and

an 'lastically recoverable strain" shoulld be defined so as to

correspond to that lstress. In previous publications it was

assumed that this strain is approximately equal to the strain

which can actually be recovered in an experiment on retarda-

tion of strain at P a 0.

It now appears better to define the elastically re-

coverable strain under conditions in which the whole stress

present in the medium is different from zero and corresponds

to the stored elastic energy, as in an experiment on the re-

laxation of stress at - - 0 (S- constant). According to

Maxwell's law one can then define an elastically recoverable

strain as the ratio of the stress and the elasticity modulus,

calculated by dividing the viscosity modulus by the relaxation

time observed in the said relaxation experiment .- .

Alternatively, one may use in the terminal position

vibrational experiments, and extrapolate the experiments to

zero frequency and zero amplitude. One there deduces the
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elastically recoverable strain by dividing the stress by an

elastic modulus calculated from the reciprocal complex modulus.

Having defined the elastically recoverable strain in

any of the above-mentioned ways, one can identify it with the

corresponding strain which in an ideally elastic medium can

be completely recovered. By doing this, one obtains for all

media and conditions not only the information available through

the formulations 1 and 2 of the principle but also all the new

information which can be deduced from the various formulations

of the principle given below for ideally elastic media. It

may be noted that the said new information is applicable to

media of all kinds, even to media which are considered purely

viscous (irrespective of whether the viscosity is normal or ab-

normal, j.E., constant or dependent on the rate of shear), as

such media can be treated in accordance with Maxwell's theory

as having an elastically recoverable strain of infinitesimally

small size corresponding to the strain that had occurred dur-

ing the infinitesimally small relaxation time of such media.

4. Theory of Elasticity

For the clear case of ideally elastic media we shall

now reformulate the principle by considering that on every test

area the normal, tangential and cross directions are now uniquely

defined, not only for the tractional forces but also for the

tractional displacement of. the test area relative to its
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parallel neighbor, because for elastic media one has to take

into account only the total tractional displacement. From

assumption IX.2 and equation (1) one then deduces for any one

test area:

Principle for Elastic Media (Formulation 3): For

every test area of an elastic medium one has a coincidence of

the normal, tangential and cross direction of the tractional

forces with the corresponding directions of the tractional

total displacement of the test area relative to its parallel

neighbor, this displacement being taken from an initial posi-

tion of isotropic symmetry to the terminal position considered.

In short, an elastic medium exhibits at every test area stresses

and strains which are anisotropically similar in an invariant

sense (i.t. , independent of the arbitrary choice of the scale

functions). 1

The tensorial equation of state corresponding to

this formulation can therefore be written in any or all of the

forms given in lecture VIII for the anisotropic similitude.

Moreover, some further forms can be derived which all give

different aspects of the invariant anisotropic similitude.

In particular, it is found that for elastic media s(t) in (1)

is no longer a function of time.

1. This follows from the identity of formulation 3 of the prin-

i ciple with the invariant definition of the anisotropio simili-

tude of states of' strains and stresses (see lecture VIII).
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The corresponding algebraic formulation of the ten-

sorial equation of state is then deduced; s(t) is no longer a

function of time but uniquely defined as s say, and therefore,

RG IF, s, n] - RG [s,n] - j with G (F,n,s) - 0 (6)

This means that in anisotropically similar states of stresses

and strains the tractional force lies always in the plane con-

taining the normal n to the test area, and the vector s which

characterizes the total tractional displacement.

One can express equation (6) in terms of the scale

functions S- and P- and then in terms of any arbitrarily chosen

scale functions C- and D-, and then finds
2

112
RG - { for G (1-, S-, P-) - 0 with (7)

S- - co1- + c C- + c CC_ and (8)

0 1 2 -

1. The rank of Gram's determinant can never be larger than the

number of vectors in the set, and must therefore be equal to 2

or 1 for the Gram's determinant of s and n.

2. See Grossman, P.U.A., I.E. One can define for symmetric ten-

sors Gram's determinant by writing each term in that determinant

as the scalar double dot product of the tensors instead of the

scalar dot product of the vectors. The same applies to volume

densities and capacities of tensors.



9-21

Proceeding then from the consideration of one test

area to a comparison of the conditions on two test areas of

different orientation, one can now formulate for elastic media

the assuw dn IX.3 and the equation (2) for all three mutually

perpendicular components without reference to directions and

time dependence. This will reveal the consistency of the as-

sumptions with one another, and in each assumption for the three

components involved as one deduces here the same scale invari-

ant anisotropic similitude of stress and strain from consider-

ing separately for the various components assumption IX.3

and equation (2). Incidentally, some further aspects of the

anisotropic similitude of stress and strain will thereby be

revealed which are again scale invariant but refer instead of

the directions to the amounts of the components involved.

Principle for Elastic Media (Formulation 4): One

finds on two test areas of different orientations the same

amounts of normal (tangential, cross) components of the trac-

tion forces per unit area if the two test areas have suffered

per unit area the sam amounts of the normal (tangential, cross)

components of the total fractional displacements relative to

their parallel neighbors, the total displacement being taken

from an initial position of isotropic symmetry to the terminal

position considered.

By formulating then equation (2) separately for each

of the three components, and oonsidering that n._ and m_ are no
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longer functions of time, but uniquely defined, one obtains

three equations from which one can deduce equations (6) to

(9) and so establish here again the anisotropic similitude,

now formulated in a scale-invariant way by reference to the

amounts of the components.1

There is no need to give the relevant equations here

as they are identical with those already given. However, in

dealing with elastic media one has to take into account that

any equation of state formulated for such media will have to

be restricted in accordance with the existence of a strain

potential 40 say, which ensures that the work done on any com-

plete cycle equals zero. One can express this restriction in

terms of the scalar invariants of the scale functions S-, viz.,

W- R 0 (for S- = const. and S-ILI = const.) (10)

and in terms of any arbitrary scale function C- by substituting

in (10) in accordance with (8).

5. Application to Simple (Two-Dimensional) Laminar Shearing

Motions

Against the many applications there is one which is

particularly well-suited for a discussion and that is the me-

chanical behavior of media under the application of simple (two-

dimensional) laminar shearing motions. These motions have al-

ready been considered earlier on the basis of the tensorial

1. See Grossman, P.U.A., '...
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equations of state derived from formulations 1 and 2 of the

principle. The conclusion then was the equality of P2 2 and

P33 should apply to all media -- solid, fluid, or intermediate,

elastic, viscous, or viscoelastic, compressible or incompress-

ible, etc., -- and to all the various boundary conditions, and

conditions of flow compatible with a simple (two-dimensional)

laminar shearing motion. Now, the same generality of appli-

cation will be claimed for conclusions reached from the equa-

tions of state derived from formulations 3 and 4 of the prin-

ciple in which the prehistory of the tractional movement is

replaced by an appropriately defined elastically recoverable

strain.

From considerations of symmetry one finds for every

simple (two-dimensional) laminar shear in Cartesian systems of

coordinates that stress P is given by

Pll P12 0

P " P12 P2 2 0 (ll)*

0 0 P3 3

while the elastically recoverable strain is given by

C 2 C 0+1

S - C 1 0 where (12)*

0 0 1

C is the displacement of a plane at unit normal distance from the
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plane of the test area and the strain velocity' i by

0 120

S12 0 0 for S '0 (13)

0 0 01

Denoting by aik' Pik and Tik the angles between the

k axis of coordinates and the i main axis of the stress P, the

elastically recoverable strain S, and the strain velocity

respectively, one finds from (11)* to (13)*

'k3 - k3 ' 7k3 m '3k m 03k = T3k - 0 for k - 1,2,3 (14)*

a11 - a 2 2  -a12 ' 180
0 - a21 = 1/2 arctan 2 P1 2  (15)*

P21- P22

2
l - 22 - - 12 - 1800 - =2l - 1/2 arctan Z (16)*

ill ' Y22 -712 = 1800 - '21 = 450 (17)*

The formulations 3 and 4 of the principle then require

that there should be an anisotropic similitude between the

stress and the elastically recoverable strain so that P and S

obey all the equations (6)* to -(9)* of this lecture as well as

the corresponding equations of lecture VIII. It follows from

all these equations that in accordance with the said aniso-

tropic similitude there must always be coaxiality between P and

S (but not in general with i), z.,

Q -A k (for i and k equal to 1,2,3) with (18)'

2112 - / rca
%kk=Okkl/2 art2rct I/___ (for k-l,2) (19)'

I'1"22



S9-25

and with equations similar to (19)' for the indices 12 and 21

of a and i. It also follows that there must always be propor-

tionality between the differences of the components of P with

cyclically permuted indices and the differences of the corre-

sponding components of S, with a scalar proportionality factor

S, say, y".,

P11 - P2 2 M ([c 2 +1]-) - c2 (20)*

P22 - P33 - (1-1) - 0 (21)*

P3 3 - P1 1 - (l-[c 2 +]) - - c 2  (22)*

P12 - 0 - (c-O) - c (23)*

where the. scalar proportionality factor 7 may be regarded as

a shear modulus of elasticity of the kind of a pseudoproperty

of the medium as T will, in general, not be a constant but a

function of any or all the scalar parameters, including the

scalar invariants of the stress, of the elastically recover-

able strain, and of the strain velocity, etc. One finds for

the said shear modulus from (20)* to (23)*

-P12 and (24)'
P l-P22

for the elastically recoverable strain a Cartesian tensor of

.the form (12)* with

C- PIlPl22 (25)*
P~12

(Here then one has a special case in which the elastically re-

coverable strain is already determined by the principle, and
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one can check by experiments on relaxation, retardation, ad

on superposition of vibrations, which general definition of

elastically recoverable strain will beat be used as an equiva-

lent for the generally unknown prehistory of the medium.)

.Summarizing the results obtained above for the orion-

tations of the Cartesian tensors P, 8 and , one finds in the

coordinate plane (12)

a -k - Okk - 450 - f (for k-1,2) with (26)*

- 1/2 arctan P l"P22 - 1/2 arctan g (27)*

2P12 2

(a) The differences between the traction forces

across test planes parallel and perpendicular to the tangential

direction of the shearing movement must have the signs of pulls,

and the amounts of these pu lls per unit area should correspond

to the amounts of the tangential components of the elastically

recoverable strain. Hence, in combination with (5)* one finds

P11 - P22 P11 - P33 - -V e 0  (28)*

when pulls are associated with a positive sign.

(b) The differences between the amounts of the trac-

tional forces per unit area parallel and perpendicular to the

tangential directions of the shearing movement will have amounts

which are infinitesimally small, approaching sero in the limit.

1. It suffices to discuss the orientations of the tensors in thu

(12) coordinate plane since there is a coincidence of the EQ 3

main axes of all the said tensors with the No. 3 coordinate axes.
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., Tis rlneang, that whenever the amount:,of the, shear !om-

ponent C of the elastically recoverable strain.,is-.finite~f or

vanishinglysmall, one will observe respectivelyrfinite amounts,

or:.vanishingly small amounts of normal pressure effects, i;e.,

of differences (P1 1 - P2 2 ) of normal pressures, and one will

also observc finite amounts, or vanishinyly small amuunts of

the angle by which the directions of the main axes No. 1 and 2,

of the stress P and of the recoverable strain S deviate from

the + 450 directions in the (12) coordinate plane. These ob-

servations are expected in media of all consistencies and of

all mechanical properties -- solid, fluid or intermediate. It

may be noted that Newtonian media and all other media which

are described as purely viscous will here be regarded as limit-

ing cases of viscoelastic media with ,,ani-hinly small (or

zero) amount of the shear component C of the elastically recov-

erable strain. It then follows that all these media will not

show any normal pressure effects (the difference P11 - P22 )

being then vanishingly small, as well as the differences

(P - P33 ) and (P33 - PII)), and there will be no deviation

of the main axes No. 1 and 2 of the stress and the recoverable

strain from the + 450 directions in the (12) coordinate plane.

As the + 450 directions coincide with the directions of the

main axes No. 1 and No. 2 of the strain velocity S for all

media, and all rates of shear different from zero, one finds
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here that there is coaxiality of stress, recoverable strain

and strain velocity.

The main result has been the prediction of phenomena

of normal pressures in simple (two-dimensional) laminar shearing

motions. The prediction was that the differences between the

normal pressures per unit area taken on two test areas respec-

tively perpendicular and parallel to the lines of flow should

have the sign of pulls and correspond to the elastically re-

coverable amounts of normal displacements of these areas rela-

tive to their parallel neighbors. These pulls are expected

to approximate zero for all media and conditions under which

the recoverable elastic strain approaches zero, as for instance

for all purely viscous media (including Newtonian fluids) under

all conditions, and for viscoelastic media under vibrational

tests with' small amplitudes approximating zero. It was fur-

ther predicted that there should be an angular deviation be-

tween the directions of the main axes of stress, and those of

the strain velocity, this deviation corresponding to the amount

of elastically recoverable strain and approximating zero if

and when the amount of elastically recoverable strain approxi-

mates Zero.
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Seminar on Continuum Mechanics

Lecture X

Principles of Mechanical Properties of Continuous Media

Part V. The Tensorial Equation of State Deduced by Generalization

A. Introduction

1. Outline of General Procedure

The tensorial equation of state will be derived in

this lecture in a manner distinctly different from that adopted in

the previous lecture which had been based on an analysis of the

tractional movement and tractional forces into their respective

normal, tangential and cross components.

The procedure adopted in this lecture starts from the

consideration of a special case -- that of an ideally elastic

medium subjected to strains of infinitesimally small amounts,

for which a tensorial equation of state has already been es-

tablished as Hooke's law of elasticity -- and proceeds from

there to build up in successive steps of generalization the

principle of a tensorial equation of state which should be

applicable to all media and conditions. Each step of this gen-

eralization is based on the use of scale invariants, and this

makes the generalization uniquely determined, as there is one

and only one way in which the correlation of Hooke's law be-

tween the stresses and the infinitesimally small strains can
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be made invariant against all changes of the scale functions

by which the stresses and strains are measured.

After the generalization of Hooke's law has been

completed as indicated above, an analogous procedure will be

adopted for the generalization of time-dependent linear laws

which have been established for infinitesimally small strains.

It will be seen that in this way the formulations of

the principle and of the equation of state given in the pre-

vious lecture will be regained, so that the self-consistency

of the whole scheme will be demonstrated.

For ease of notation the equations will be restricted

to Cartesian systems of coordinates except where explicitly

stated otherwise. The said restriction (denoted again by an

asteric attached to the number of the equation) will allow us

to disregard the distinction between true tensors and pseudo-

tensors (volume densities and capacities of tensors) and to

treat all these quantities as true Cartesian tensors and to

denote them all by symbols without the distinguishing stroke

at index level which has been used for the pseudo-tensors.

Thus, the stress, which is a tensor density, will be denoted

by P in equations with an asteric and by P- in equations with-

out an asteric, as the latter apply to all coordinate systems,

Cartesian as well as non-Cartesian.
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It will be convenient to retain the assumption

IX.l in the present lecture and to postulate that.the media

have in the initial position the full symmetry of the Euclid-

ean space in which they are imbedded, j.j., they are in that

position (but not in general in any other position) homogene-

ous, isotropic and parity-symmetrical under mechanical testing.

B. Generalization of Hooke's Law of Elasticity by Means of

Scale Invariants

1. Formulation of Hooke's Law in Cartesian Systems of

Coordinates

One can write Hooke's law in Cartesian system of

coordinates as

P + P + eye W 0 (1)*

where one denotes by

P the stress

6 the strain of an infinitesimally small amount which

accordiftg to the classical definition is given

as the symmetrical part of the gradient of the

displacement vector

6 the first invariant of 6I

, material constants.

The formulation of Hooke's law in equation (1) is

given in terms of the classical scale functions P and 6, but
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this formulation is not invariant against changes of these

functions. For the infinitesimally small strains one finds

that the choice of a scale function is irrelevant since for

strains of this size all the scale functions are linearly

interrelated, and a change from one to another will only

affect the values of the material constants but not their

constancy nor the linearity of the equation (1). However,

the change of scale functions will be relevant for the

stresses, and also for strains whose sizes are unrestricted

so that they may be of any amount, large or small. A change

in the scale functions will then in general affect not only

the values but also the constancy material characteristics,

and will moreover change the linearity of the equation (1)

making it only tensor-linear or nonlinear altogether. As

the choice of scale functions is arbitrary, a generalization

of Hooke's law which is dependent on some particular choice

of these functions will involve the same arbitrariness. In

order to avoid such an arbitrariness one has to find a formu-

lation of Hooke's law which is invariant against all changes

of the scale functions, and this formulation can then be

generalized under preservation of the said invariance,



r
lO-5

2. The Anisotropic Similitude of Stresses and Infinitesi-

mally Small Strains Deduced from the Scale-

Invariant Formulation of Hooke's Law

The Scale-invariant formulation of Hooke's law c&n

be obtained in two distinct stages, .

In the first stage we eliminate the material con-

stants. For this purpose we apply to the Cartesian coordinate

system certain rotations which will result in successive cycli-

cal permutations of the coordinate axes, thus yielding in the

original Cartesian system the equations

P' + 3E +I eM 0 and (2)

PSI + OF" + 'yiY = 0 (3)

where the stresses and strains obtained by the successive

cyclical permutations are denoted by P' and E' and by P" and

C" respectively. The quantities 0, y, 6I and I have remained

unchanged because they are by definition of isotropic symmetry,

and hence invariant against the said permutations. Subtracting

then in cyclical order equation (2) from (1), (3) from (2) and

(1) from (3), one finds for the ratio of the differences of

the stresses and strains

(P-P'):( '-P"):(P-P) - (E-E,):(,-E,):(E,-E') (4)*

and this equation is invariant against all linear changes of

the scale functions P and e but not against nonlinear changes.
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In the second step we compare the equation (4)* with

the equation (34)' of the lecture VIII, which expressed the

anisotropic similitude, and find that both equations are iden-

tical for the strains of infinitesimally small amounts here

considered.1 As the anisotropic similitude had been defined

in a way completely invariant against changes in the scale

functions by the coincidence on every test area of the normal,

tangential and cross directions of the tractional forces with

the corresponding directions of the tractional movements there.

One can easily verify2 that Hooke's law implies this invari-

antly defined anisotropic similitude by equation (4)*.

1. Equation (34)* of lecture VIII can be written as

(P-P'):(P'-P"):(P"-P) - (S-S'):(S'-S"):(S"-S)

and this is further equal to

which in the limes of infinitesimally small strains (i.e.,

lim *\,- 1) becomes equation '(4) since

£ - 1/2 lmx,),,)i$-I) m.e.d.

2. For this verification one calculates from (4) and from (15)

to (28) of lecture VIII the directions in questions, and finds

the coincidence of the directions of corresponding components

by direct comparison of the results. Alternatively, one can

compare (4)k with (31) of lecture VIII, and show that

(4)* is a special case Of (31) for the limit of infinitesimally

small strains.
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3. Scale-Invariang Generalization of Hooke's Law Result-

ing in a Law of Anisotropic Similitude

between Stresses and Strains of any Amounts,

Large or Small

A scale-invariant generalization of Hooke's law can

now be carried out by postulating that the invariantly defined

anisotropic similitude should be maintained for finite amounts

of strain. In that way equation (4)* is then generalized to

UP + VS + WI -0 (5)*

and this can be written in a manner completely invariant

against all coordinate transformations and all changes of

scale functions as

UP- + VS- + WI- = 0 where (6)

P- =d I- + d D- + d D- D_ -- and (7)o 2. 2 2.

S- = o I- + c C + cC C_ (8)o 1 2

and where U, V and W are scalars which can now be either con-

stants or functions of any scalar parameters including the

scalar invariants of P" and S-. The C- and D- are arbitraryn

scale functions, and their introduction into (6) gives an equa-

tion identical with (4) of lecture VIII. Thus, the law de-

rived here by generalization of Hooke's law is a tensorial

equation of state identical with that deduced in the previous

lecture for ideally elastic media by the analysis of the trac-

tional forces and tractional movements into the three mutually
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perpendicular components. The equations (5)* to (8) can then

be rewritten in any or all the forms given in lectures VIII

and IX for the anisotropic similitude of stresses and strains.

However, one has to remember that the stress strain relations

for ideally elastic media are restricted by the assumption

of the evidence of a strain potential which ensures that the

external work is zero for any complete cycle of straining move-

ments. This condition is automatically fulfilled for media

which obey Hooke's law, but is not in general fulfilled for

media obeying the generalized law. For such media one has

to add the condition for a strain potential, as given in the

previous lecture if one wants to restrict the generalized law

to ideally elastic media.

C. Generalization of Time-Dependent Linear Laws for Infini-

tesimally Small Strains

Within the frame work of classical mechanics of in-

finitesimally small strains, one accounted for the effects of

the prehistory by formulating a law in which one related a

linear aggregate of the stresses and their time derivatives,

say, to a linear aggregate of the strains and their time deriva-

tives (1) say, the strains being infinitesimally small, and the

linear aggregates having constant coefficients r(i), (j)

and t(k) say, XLj., in notation invariant to transforma-

tions of Cartesian coordinate systems
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where, for ease of description, one denoted the quantities

(i) ( ) (k)
P, GE and 61 respectively by P, , and e I for i, j and

k - 0. All the linear laws in classical mechanics of infini-

tesimally small strains are special cases of (9)*; in particu-

lar one finds for solid media that Hooke's law of elasticity

and Kelvin's law of viscoelasticity are such special cases,

and so are the laws for fluid media known as Newton's law

of viscosity and Maxwell's law of viscoelasticity.

For a generalization one again eliminates the con-

stant coefficient. This can be done in two stages. In the

first stage we apply again rotations corresponding to cycli-

cal permutations of the coordinate axes, and eliminate the

constants T(k) by subtracting the equations from one

another. One then obtains three equations, viz.,

t~I~)PPO 4Z (10) *

and two further equations of the same type for (( P-( P") and

PIn the second we assume a special prehistory with

a periodic straining movement. For this prehistory one finds

from (9) periodic solutions for the stresses and strains, for

which one has in the usual complex notation

where all the quantities in (11) are complex. -This means that

in case of'such a special periodic prehistory one finds again
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anisotropic similitude for the stresses and infinitesimally

small strains, and this similitude can easily be verified

first for the special prehistory and the infinitesimally

small strains considered as there will be on a test area of any

orientation a coincidence of the normal tangential and cross

directions of the traction forces with the corresponding direc-

tions of the displacement of that plane relative to its par-

allel neighbor. There will also be on any two test areas of

different orientations the same normal (or tangential or

cross) components of the traction forces per unit area, for

the same corresponding components per unit area of the dis-

placements of the areas with respect to their parallel neighbors.

For the said special prehistory and infinitesimally

small strains one can then generalize the law (9) which is

truly linear with constant coefficients, and obtain a gener-

alized law which is only tensorial linear (i.e., involving

only the first powers of tensors) but scalar nonlinear, by

replacing the constant coefficients by functions of any scalar

variables (including the three scalar invariants of the stresses

and strains). This law will still postulate the anisotropic

similitude for the stresses and strains under the conditions

already specified, as one can derive from it an equation iden-

tical with (11) by proceeding as above.
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A further generalization can be made by taking into

account prehistories of any kind, and strains of any magni-

tude. In the course of such a prehistory with strains of

finite amounts the tangential directions of the displacement

of a test area with respect to its parallel neighbors will

in general not be uniquely defined but cover a whole range of

directions, and only this range, but not a single member of

it, can be related to the tangential direction of the trac-

tion force present at any instant of time. Thus, the postu-

late of an anisotropic similitude which is invariant of any

changes of the scale functions and based on coincidence of

directions cannot be maintained in this generalization. For

the same reason one cannot relate the equality of tangential

components of the traction forces on two test areas with the

equality of the corresponding components in the displacements

of the two test areas with respect to their parallel neighbors.

However, this difficulty does not exist for the normal direc-

tions of two test areas as these directions will always be

uniquely defined, and will be the same for the traction forces

and the relative displacements. Bearing this in mind one

finds that the required generalization can be carried out in

a manner which is invariant against changes in the scale func-

tions by adopting the principle as given in its first and sec-

ond formulation in the preceding lecture.
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Thus, altogether one arrives by a synthetic process

of successive steps of generalization at the same formulations

of the principle and the tensorial equations of state as had

previously been deduced by the analytical procedure. This

completes the cycle and emphasizes the self-consistency of

the whole scheme.

D. Discussion of the Usefulness of the Principle

In a study of Continuum Mechanics the principle can

be usefully applied in many ways as it serves as a guide to

the phenomena in which there is a likeness in the mechanical

behavior of continuous media of all kinds and under all con-

ditions.

With regard to theoretical applications it is inter-

esting to note that the exact validity of the principle can

be established for certain groups of ideal media, and for

certain conditions of symmetry, viz.,

(1) for the groups of ideal media which are defined

as obeying a linear relationship between the stresses and in-

finitesimally small strains and their respective time deriva-

tives. The principle is valid within the range of such small

strains, irrespective of whether the media are solids, obeying

Hooke's law of elasticity or Kelvin's law of viscoelasticity,

or fluids obeying Newton's law of viscosity, or Maxwell's law
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of viscoelasticity or any other linear law. (This follows

from the consideration given in chapter D of the present

lecture.)

(2) for deformations of cylindrical or higher sym-

metry, when they are applied in any amounts, large or small,

and in any development of time to a medium of any kind and

consistency. (To prove this one can derive the formulation

3 of the principle from the cylindrical or higher symmetry

of the applied deformations.)

For a completely general case one cannot prove

theoretically the exact validity of the principle. However,

it can serve there for the prediction of phenomena, at least

in a first approximation, and one can then carry out experi-

mental tests, and find out what corrections, if any, have to

be made in accordance with the terms which have been deliber-

ately neglected in the said first order of approximation.

For simple (two-dimensional) laminar shearing motions, pre-

dictions of normal pressure phenomena have in fact been made

for media of all consistencies -- solid, fluid, and interme-

diate -- and the experimental tests have led to the following

conclusions:

(1) There are very wide ranges of media and condi-

tions for which there is an exact agreement within the limits

of experimental accuracy between the predictions of the prin-

ciple and the experimental results.
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(2) For media and conditions outside the ranges

mentioned under (1), deviations were found for some media

and conditions, but these deviations were still sufficiently

small to regard the predictions by the principle as a first

approximation to the experimental results, so much so that

it appears still doubtful whether the deviations were due

to experimental. defects, or to the idealization implied by

the principle.
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